Table of Contents
ISRN Epidemiology
Volume 2013 (2013), Article ID 703230, 8 pages
http://dx.doi.org/10.5402/2013/703230
Research Article

Disease Control in Age Structure Population

1Department of Computer Science, University of Yaounde I, UMI 209, UMMISCO, P.O. Box 337, Yaounde, Cameroon
2Institut de la Francophonie pour l’Informatique, UMI 209, UMMISCO, Hanoi, Vietnam, IRD, 32 Avenue Henri Varagnat, 93143 Bondy Cedex, Vietnam
3Department of Technology, Langston University, Langston, OK 73050-1500, USA
4GEMI, UMR CNRS-IRD 2724, Centre IRD, 911 Avenue Agropolis, BP 64501 Paris, France

Received 30 July 2012; Accepted 1 October 2012

Academic Editors: C. M. Maylahn, C. Raynes-Greenow, and M. Stevenson

Copyright © 2013 Etienne Kouokam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. M. Ferguson, C. A. Donnelly, and R. M. Anderson, “The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions,” Science, vol. 292, no. 5519, pp. 1155–1160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. P. Simarro, A. Diarra, J. A. R. Postigo, J. R. Franco, and J. G. Jannin, “The human african trypanosomiasis control and surveillance programme of the world health organization 2000–2009: the way forward,” PLoS Neglected Tropical Diseases, vol. 5, no. 2, Article ID e1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Dietz, “Transmission and control of arbovirus diseases,” in Epidemiology, K. L. Cooke, Ed., pp. 104–121, SIAM, Philadelphia, Pa, USA, 1975. View at Google Scholar
  4. A. E. Crews and T. P. Yoshino, “Schistosoma mansoni: effect of infection on reproduction and gonadal growth in Biomphalaria glabrata,” Experimental Parasitology, vol. 68, no. 3, pp. 326–334, 1989. View at Google Scholar · View at Scopus
  5. J. C. Hogg and H. Hurd, “Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles stephensi mosquitoes,” Medical and Veterinary Entomology, vol. 9, no. 2, pp. 176–180, 1995. View at Google Scholar · View at Scopus
  6. O. Diekmann, J. A. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990. View at Google Scholar · View at Scopus
  7. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Heffernan, R. J. Smith, and L. M. Wahl, “Perspectives on the basic reproductive ratio,” Journal of the Royal Society Interface, vol. 2, no. 4, pp. 281–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. A. Hartemink, S. E. Randolph, S. A. Davis, and J. A. P. Heesterbeek, “The basic reproduction number for complex disease systems: defining R0 for tick-borne infections,” American Naturalist, vol. 171, no. 6, pp. 743–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Bonds and P. Rohani, “Herd immunity acquired indirectly from interactions between the ecology of infectious diseases, demography and economics,” Journal of the Royal Society Interface, vol. 7, no. 44, pp. 541–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Dietz, “The first epidemic model: a historical note on P.D. En'ko,” Australian Journal of Statistics, vol. 30, no. 1, pp. 56–65, 1988. View at Publisher · View at Google Scholar
  12. J. A. Jacquez, Modeling with Compartments, Patterson Printing, 2000.
  13. H. W. Hethcote, “Mathematics of infectious diseases,” SIAM Review, vol. 42, no. 4, pp. 599–653, 2000. View at Google Scholar · View at Scopus
  14. M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, USA, 2007.
  15. R. M. Anderson, R. M. May, and B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford Science Publications, 1992.
  16. P. Rohani, X. Zhong, and A. A. King, “Contact network structure explains the changing epidemiology of pertussis,” Science, vol. 330, no. 6006, pp. 982–985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Mossong, N. Hens, M. Jit et al., “Social contacts and mixing patterns relevant to the spread of infectious diseases,” PLoS Medicine, vol. 5, no. 3, article e74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, Chichester, UK, 2000.
  19. D. Schenzle, “An age-structured model of pre- and post-vaccination measles transmission,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 1, no. 2, pp. 169–191, 1984. View at Google Scholar · View at Scopus
  20. P. H. Leslie, “On the use of matrices in certain population mathematics,” Biometrika, vol. 33, no. 3, pp. 183–212, 1945. View at Google Scholar
  21. P. H. Leslie, “Some further notes on the use of matrices in population mathematics,” Biometrika, vol. 35, no. 3-4, pp. 213–245, 1948. View at Google Scholar
  22. H. von Foerster, “Some remarks on changing populations,” in The Kinetics of Cellular Proliferation, F. Stahlman Jr., Ed., pp. 382–407, Grune & Stratton, New York, NY, USA, 1959. View at Google Scholar
  23. J. Li and T. G. Hallam, “Survival in continuous structured populations models,” Journal of Mathematical Biology, vol. 26, no. 4, pp. 421–433, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Retel-Laurentin, “Influence de certaines maladies sur la fãĺconditãĺ: un exemple africain,” Population, vol. 22, no. 5, pp. 841–860, 1967. View at Google Scholar
  25. United Nations Publication, World Population Prospects: The 2010 Revision, United Nations Publication, 2011.
  26. CIA, The World Factbook, CIA, 2012.
  27. A. Saltelli, K. Chan, and E. M. Scott, Eds., Sensitivity Analysis, John Wiley & Sons, New York, NY, USA, 2000.
  28. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, New York, NY, USA, 2004.
  29. F. Campolongo, J. Kleijnen, and T. Andres, “Screening methods,” in Sensitivity Analysis, A. Saltelli, K. Chan, and M. Scott, Eds., pp. 65–80, John Wiley & Sons, New York, NY, USA, 2000. View at Google Scholar
  30. A. Saltelli, M. Ratto, T. Andres et al., Global Sensitivity Analysis: The Primer, John Wiley & Sons, New York, NY, USA, 2008.
  31. I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,” Mathematical Modelling and Computational Experiments, vol. 1, pp. 407–414, 1993. View at Google Scholar
  32. A. Saltelli, “Making best use of model evaluations to compute sensitivity indices,” Computer Physics Communications, vol. 145, no. 2, pp. 280–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Auger, E. Kouokam, G. Sallet, M. Tchuente, and B. Tsanou, “The Ross-Macdonald model in a patchy environment,” Mathematical Biosciences, vol. 216, no. 2, pp. 123–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Kouokam, P. Auger, H. Hbid, and M. Tchuente, “Effect of the number of patches in a multi-patch SIRS model with fast migration on the basic reproduction rate,” Acta Biotheoretica, vol. 56, no. 1-2, pp. 75–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics,” Proceedings of the Royal Society of London. Series A, vol. 115, no. 772, pp. 700–721, 1927. View at Publisher · View at Google Scholar