Table of Contents
ISRN Oncology
Volume 2013, Article ID 709269, 10 pages
Research Article

Antileukemic Efficacy of Monomeric Manganese-Based Metal Complex on KG-1A and K562 Cell Lines

1Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721 102, India
2Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India

Received 17 July 2013; Accepted 17 August 2013

Academic Editors: M. B. Gariboldi, Z. S. Guo, and R. Sanchez-Prieto

Copyright © 2013 Sandeep Kumar Dash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Transitional metals and metal compounds have been used in versatile platforms for biomedical applications and therapeutic intervention. Severe side effects of anticancer drugs produce an urgent urge to develop new classes of anticancer agents with great potency as well as selectivity. In this background, recent studies demonstrate that monomeric manganese (MnII) thiocyanate complex (MMTC) holds great promise to exert effective antileukemic effects. MMTC was developed by a simple chemical reaction and characterized by elemental analyses, thermal analyses, and Fourier transform infrared (FTIR) spectroscopy. Anti-leukemic efficacy of the developed MMTC was estimated in KG-1A (AML) and K562 (CML) cell lines. Cell viability study, drug uptake assay, cellular redox balance (GSH and GSSG level), nitric oxide (NO) release level, reactive oxygen species (ROS) formation, alteration of mitochondrial membrane potential (MMP), and DNA fragmentation revealed that MMTC was able to produce significant antiproliferative effects on both cell lines at 25 μg mL−1 without showing any toxicological impact on normal lymphocytes. These findings will enlighten the biomedical application of manganese-based metal complexes as anti-leukemic agents.