Table of Contents
ISRN Corrosion
Volume 2013 (2013), Article ID 710579, 9 pages
http://dx.doi.org/10.1155/2013/710579
Research Article

The Development of a Mathematical Model for the Prediction of Corrosion Rate Behaviour for Mild Steel in 0.5 M Sulphuric Acid

1Department of Metallurgical Engineering, Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria
2Department of Mechanical Engineering, University of Abuja, Abuja, Nigeria
3Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria, Nigeria

Received 5 November 2012; Accepted 26 November 2012

Academic Editors: Q. Qu and E. Stupnisek-Lisac

Copyright © 2013 I. Y. Suleiman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Tripathi, A. Chaturvedi, and R. K. Upadhayay, “Corrosion inhibitory effects of some substituted thiourea on mild steel in acid media,” Research Journal of Chemical Sciences, vol. 2, no. 2, pp. 18–27, 2012. View at Google Scholar
  2. S. Rekkab, H. Zarrok, R. Salghi et al., “Green corrosion inhibitor from essential oil of Eucalyptus globulus (Myrtaceae) for C38 steel in sulfuric acid solution,” Journal of Materials and Environmental Science, vol. 3, no. 4, pp. 613–627, 2012. View at Google Scholar
  3. A. Ostovari, S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh, and S. J. Hashemi, “Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid),” Corrosion Science, vol. 51, no. 9, pp. 1935–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Abd El-Maksoud, “The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review,” International Journal of Electrochemical Science, vol. 3, no. 5, pp. 528–555, 2008. View at Google Scholar
  5. A. Begum, S. Harikrishna, I. Khan, and K. Veena, “Enhancement of the inhibitor efficiency of atropine methochloride in corrosion control of mild steel in sulphuric acid,” E-Journal of Chemistry, vol. 5, no. 4, pp. 774–781, 2008. View at Google Scholar · View at Scopus
  6. A. A. Rahim and J. Kassim, “Recent development of vegetal tannins in corrosion protection of iron and steel,” Recent Patents on Materials Science, vol. 1, no. 3, pp. 223–231, 2008. View at Publisher · View at Google Scholar
  7. A. M. Al-Turkustani, S. T. Arab, and R. H. Al-Dahiri, “Aloe plant extract as environmentally friendly inhibitor on the corrosion of aluminum in hydrochloric acid in absence and presence of iodide ions,” Modern Applied Science, vol. 4, no. 5, pp. 105–124, 2010. View at Google Scholar
  8. A. Singh, V. K. Singh, and M. A. Quraishi, “Aqueous extract of kalmegh (Andrographis paniculata) leaves as green inhibitor for mild steel in hydrochloric acid solution,” International Journal of Corrosion, vol. 2010, Article ID 275983, 10 pages, 2010. View at Publisher · View at Google Scholar
  9. C. A. Loto, R. T. Loto, and A. Popoola, “Synergistic effect of tobacco and kola tree extracts on the corrosion inhibition of mild steel in acid chloride,” International Journal of Electrochemcal Science, vol. 6, no. 9, pp. 3830–3843, 2011. View at Google Scholar
  10. B. O. Obadoni and P. O. Ochuko, “Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in edo and delta states of Nigeria,” Global Journal of Pure and Applied Sciences, vol. 8, no. 2, pp. 203–208, 2001. View at Google Scholar
  11. O. B. Oloche, S. A. Yaro, and E. G. Okafor, “Analytical correlation between varying corrosion parameters and corrosion rate of Al-4.5Cu/10%ZrSiO4 composite in hydrochloric acid by rare earth chloride,” Journal of Alloys and Compounds, vol. 472, no. 1-2, pp. 178–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Abdel-Gaber, B. A. Abd-El-Nabey, and M. Saadawy, “The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract,” Corrosion Science, vol. 51, no. 5, pp. 1038–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Ilayaraja, A. R. Sasieekhumar, and P. Dhanakodi, “Inhibition of mild steel corrosion in acidic medium by aqueous extract of tridax procumbens L,” E-Journal of Chemistry, vol. 8, no. 2, pp. 685–688, 2011. View at Google Scholar · View at Scopus
  14. J. B. Wachtman and R. A. Haber, Ceramic Films and Coatings, Noyes Publications, Park Ridge, NJ, USA, 1993.
  15. V. S. Aigbodion, S. B. Hassan, E. T. Dauda, and R. A. Mohammed, “The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites,” Journal of Minerals and Materials Characterization & Engineering, vol. 9, no. 10, pp. 907–917, 2010. View at Google Scholar
  16. I. Miller and J. E. Freund, Probability and Statistics for Engineers, Prentice Hall India, New Delhi, India, 2001.
  17. L. E. Umoru, I. A. Fawehinmi, and A. Y. Fasasi, “Investigation of the inhibitive influence of theobroma cacao and cola acuminata leaves extracts on the corrosion of a mild steel in sea water,” Journal of Applied Sciences Research, vol. 2, no. 4, pp. 200–204, 2006. View at Google Scholar
  18. N. O. Obi-Egbedi, K. E. Essien, and I. B. Obot, “Computational simulation and corrosion inhibitive potential of alloxazine for mild steel in 1M HCl,” Journal of Computational Methods in Molecular Design, vol. 1, no. 1, pp. 26–43, 2011. View at Google Scholar
  19. S. M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, Elsevier Academic Press, 3rd edition, 2004.
  20. S. Venkat Prasat, R. Subramanian, N. Radhika, B. Anandavel, L. Arun, and N. Praveen, “Influence of parameters on the dry sliding wear behaviour of aluminium/fly ash/graphite hybrid metal matrix composites,” European Journal of Scientific Research, vol. 53, no. 2, pp. 280–290, 2011. View at Google Scholar · View at Scopus
  21. E. E. Oguzie, “Corrosion inhibitive effect and adsorption behaviour of Hibiscus sabdariffa extract on mild steel in acidic media,” Portugaliae Electrochimica Acta, vol. 26, no. 3, pp. 303–314, 2008. View at Google Scholar · View at Scopus
  22. M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, and R. S. Bayoumi, “Chemical and electrochemical (AC and DC) studies on the corrosion inhibition of low carbon steel in 1.0 M HCl solution by succinic acid-temperature effect, activation energies and thermodynamics of adsorption,” International Journal of Electrochemcal Science, vol. 3, no. 2, pp. 199–215, 2008. View at Google Scholar
  23. P. G. Kochure and K. N. Nandurkar, “Mathematical modeling for selection of process parameters in induction hardening of EN8 D steelJournal of Mechanical and Civil Engineering,” vol. 1, no. 2, pp. 28–32, 2012. View at Google Scholar