Table of Contents
ISRN Gastroenterology
Volume 2013, Article ID 710856, 14 pages
http://dx.doi.org/10.1155/2013/710856
Research Article

Examination of the Anti-Inflammatory, Antioxidant, and Xenobiotic-Inducing Potential of Broccoli Extract and Various Essential Oils during a Mild DSS-Induced Colitis in Rats

Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany

Received 9 December 2012; Accepted 20 January 2013

Academic Editors: A. Amedei, A. K. Rishi, and N. Senninger

Copyright © 2013 Kristin Mueller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Rogler and T. Andus, “Cytokines in inflammatory bowel disease,” World Journal of Surgery, vol. 22, no. 4, pp. 382–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Arijs, G. de Hertogh, K. Machiels et al., “Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment,” The American Journal of Gastroenterology, vol. 106, no. 4, pp. 748–776, 2011. View at Publisher · View at Google Scholar
  3. A. S. Baldwin, “The NF-κB and IκB proteins: new discoveries and insights,” Annual Review of Immunology, vol. 14, pp. 649–681, 1996. View at Publisher · View at Google Scholar
  4. S. Ghosh, M. J. May, and E. B. Kopp, “NF-κB and rel proteins: evolutionarily conserved mediators of immune responses,” Annual Review of Immunology, vol. 16, pp. 225–260, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Baldwin Jr., “The transcription factor NF-κB and human disease,” The Journal of Clinical Investigation, vol. 107, no. 1, pp. 3–6, 2001. View at Google Scholar · View at Scopus
  6. M. Amasheh, I. Grotjohann, S. Amasheh et al., “Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines,” Scandinavian Journal of Gastroenterology, vol. 44, no. 10, pp. 1226–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. F. Neurath and G. Schürmann, “Immunopathogenesis of inflammatory bowel diseases,” Chirurg, vol. 71, no. 1, pp. 30–40, 2000. View at Google Scholar · View at Scopus
  8. Y. Xu, B. Gong, Y. Yang, Y. C. Awasthi, M. Woods, and P. J. Boor, “Glutathione-S-transferase protects against oxidative injury of endothelial cell tight junctions,” Endothelium, vol. 14, no. 6, pp. 333–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Sheth, N. Delos Santos, A. Seth, N. F. LaRusso, and R. K. Rao, “Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G308–G318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kawauchiyaa, R. Takumia, Y. Kudoa et al., “Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells,” Toxicology Letters, vol. 205, no. 2, pp. 196–202, 2011. View at Publisher · View at Google Scholar
  11. L. Petecchia, F. Sabatini, C. Usai, E. Caci, L. Varesio, and G. A. Rossi, “Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway,” Laboratory Investigation, vol. 92, pp. 1140–1148, 2012. View at Publisher · View at Google Scholar
  12. A. Ocaña-Fuentes, E. Arranz-Gutiérrez, F. J. Señorans, and G. Reglero, “Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages,” Food and Chemical Toxicology, vol. 48, no. 6, pp. 1568–1575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kroismayr, J. Sehm, M. W. Pfaffl, K. Schedle, C. Plitzner, and W. M. Windisch, “Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets,” Czech Journal of Animal Science, vol. 53, no. 9, pp. 377–387, 2008. View at Google Scholar · View at Scopus
  14. M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernández-López, and J. A. Pérez-Álvarez, “Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella,” Meat Science, vol. 85, no. 3, pp. 568–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Mueller, N. M. Blum, H. Kluge et al., “Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets,” Open Journal of Animal Sciences, vol. 2, no. 3, pp. 78–98, 2012. View at Publisher · View at Google Scholar
  16. A. Bukovská, S. Cikos, S. Juhás, G. Il'ková, P. Rehák, and J. Koppel, “Effects of a combination of thyme and oregano essential oils on TNBS-induced colitis in mice,” Mediators of Inflammation, vol. 2007, Article ID 23296, 9 pages, 2007. View at Publisher · View at Google Scholar
  17. K. C. Lian, J. J. Chuang, C. W. Hsieh et al., “Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 21–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. X. F. Tian, J. H. Yao, X. S. Zhang et al., “Protective effect of carnosol on lung injury induced by intestinal ischemia/reperfusion,” Surgery Today, vol. 40, no. 9, pp. 858–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. S. Mengoni, G. Vichera, L. A. Rigano et al., “Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L,” Fitoterapia, vol. 82, no. 3, pp. 414–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Wagner C, “Anti-inflammatory potential of allyl-isothiocyanate-role of Nrf2, NFκB and microRNA-155,” Journal of Cellular and Molecular Medicine, vol. 16, no. 4, pp. 836–843, 2011. View at Publisher · View at Google Scholar
  21. Anonymous, ““Evonik Industries Product Information” TEGO Turmerone: the distilled fraction of tumeric oil extracted from 12 the roots of Curcuma longa by supercritical carbon dioxide,” 2012, http://www.centerchem.com/PDFs/TEGO%20Turmerone%20Tech%20Lit%200208.pdf.
  22. Society for Laboratory Animal Science, Ausschuss für Tiergerechte Labortierhaltung, Tiergerechte Haltung von Laborratte, 2004.
  23. L. A. Dieleman, M. J. H. J. Palmen, H. Akol et al., “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 385–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Okayasu, M. Yamada, T. Mikami, T. Yoshida, J. Kanno, and T. Ohkusa, “Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model,” Journal of Gastroenterology and Hepatology, vol. 17, no. 10, pp. 1078–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Camuesco, M. Comalada, A. Concha et al., “Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis,” Clinical Nutrition, vol. 25, no. 3, pp. 466–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Chomczynski and N. Sacchi, “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on,” Nature Protocols, vol. 1, no. 2, pp. 581–585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Kerr, M. A. Ciorba, H. Matsumoto et al., “Dextran sodium sulfate inhibition of real-time polymerase chain reaction amplification: a poly-A purification solution,” Inflammatory Bowel Diseases, vol. 18, no. 2, pp. 344–348, 2012. View at Publisher · View at Google Scholar
  28. N. M. Blum, K. Mueller, D. Lippmann, J. Pallauf, T. Linn, and A. S. Mueller, “Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes,” Food & Function, vol. 2, pp. 654–664, 2011. View at Publisher · View at Google Scholar
  29. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Vicario, C. Amat, M. Rivero, M. Moretó, and C. Pelegrí, “Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis,” Journal of Nutrition, vol. 137, no. 8, pp. 1931–1937, 2007. View at Google Scholar · View at Scopus
  31. A. Hakansson, C. Bränning, G. Molin et al., “Colorectal oncogenesis and inflammation in a rat model based on chronic inflammation due to cycling DSS treatments,” Gastroenterology Research and Practice, vol. 2011, Article ID 924045, 15 pages, 2011. View at Publisher · View at Google Scholar
  32. A. Venkatraman, B. S. Ramakrishna, A. B. Pulimood, S. Patra, and S. Murthy, “Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate,” Scandinavian Journal of Gastroenterology, vol. 35, no. 10, pp. 1053–1059, 2000. View at Google Scholar · View at Scopus
  33. R. C. Sprong, A. J. Schonewille, and R. van der Meer, “Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota,” Journal of Dairy Science, vol. 93, no. 4, pp. 1364–1371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Márquez, B. G. Pérez-Nievas, I. Gárate et al., “Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis,” World Journal of Gastroenterology, vol. 16, no. 39, pp. 4922–4931, 2010. View at Publisher · View at Google Scholar
  35. A. Tyagi, U. Kumar, S. Reddy et al., “Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with α-linolenic acid in a rat model of inflammatory bowel disease,” British Journal of Nutrition, vol. 108, no. 9, pp. 1612–1622, 2012. View at Publisher · View at Google Scholar
  36. E. Gaudio, G. Taddei, A. Vetuschi et al., “Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects,” Digestive Diseases and Sciences, vol. 44, no. 7, pp. 1458–1475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Pouyet, C. Roisin-Bouffay, A. Clément et al., “Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model,” Inflammatory Bowel Diseases, vol. 16, no. 1, pp. 96–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. K. Zhang, J. J. Yu, Y. M. Li et al., “A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice,” Mediators of Inflammation, vol. 2012, Article ID 751629, 9 pages, 2012. View at Publisher · View at Google Scholar
  39. K. Mueller, N. M. Blum, H. Kluge, and A. S. Mueller, “Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens,” British Journal of Nutrition, vol. 108, no. 4, pp. 588–602, 2012. View at Publisher · View at Google Scholar
  40. K. Mueller, N. M. Blum, H. Kluge et al., “Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets,” Open Journal of Animal Sciences, vol. 2, no. 2, pp. 78–98, 2012. View at Publisher · View at Google Scholar
  41. N. M. Blum, K. Mueller, D. Lippmann et al., “Keap 1 in mind: feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic ARE regulated antioxidant and phase II enzymes in growing rats,” Biological Trace Element Research, vol. 151, no. 3, pp. 384–399, 2013. View at Publisher · View at Google Scholar
  42. D. G. Binion, J. Heidemann, M. S. Li, V. M. Nelson, M. F. Otterson, and P. Rafiee, “Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF- κB: Inhibitory role of curcumin,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 297, no. 2, pp. G259–G268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Gu, N. Li, Q. Li et al., “The effect of berberine in vitro on tight junctions in human Caco-2 intestinal epithelial cells,” Fitoterapia, vol. 80, no. 4, pp. 241–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. Vreeburg, E. E. van Wezel, F. Ocaña-Calahorro, and J. J. Mes, “Apple extract induces increased epithelial resistance and claudin 4 expression in Caco-2 cells,” Journal of the Science of Food and Agriculture, vol. 92, no. 2, pp. 439–444, 2012. View at Publisher · View at Google Scholar
  45. S. Juhás, S. Cikos, S. Czikková et al., “Effects of borneol and thymoquinone on TNBS-induced colitis in mice,” Folia Biologica (Praha), vol. 54, no. 1, pp. 1–7, 2008. View at Google Scholar
  46. T. Y. Wu, T. O. Khor, C. L. L. Saw et al., “Anti-inflammatory/anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis,” AAPS Journal, vol. 13, no. 1, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Liu and J. Wang, “Anti-inflammatory effects of iridoid glycosides fraction of Folium syringae leaves on TNBS-induced colitis in rats,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 780–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. K. Gessner, R. Ringseis, M. Siebers et al., “Inhibition of the pro-inflammatory NF-κB pathway by a grape seed and grape marc meal extract in intestinal epithelial cells,” Journal of Animal Physiology and Animal Nutrition, vol. 96, no. 6, pp. 1074–1083, 2011. View at Publisher · View at Google Scholar
  49. J. Y. Kim, H. J. Park, S. H. Um et al., “Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways,” Vascular Pharmacology, vol. 56, no. 3-4, pp. 131–141, 2012. View at Publisher · View at Google Scholar
  50. K. L. Reed, A. B. Fruin, A. C. Gower et al., “NF-κB activation precedes increases in mRNA encoding neurokinin-1 receptor, proinflammatory cytokines, and adhesion molecules in dextran sulfate sodium-induced colitis in rats,” Digestive Diseases and Sciences, vol. 50, no. 12, pp. 2366–2378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. G. Markov, A. Veshnyakova, M. Fromm, M. Amasheh, and S. Amasheh, “Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine,” Journal of Comparative Physiology B, vol. 180, no. 4, pp. 591–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. T. O. Khor, M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy, and A. N. Kong, “Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis,” Cancer Research, vol. 66, no. 24, pp. 11580–11584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Larrosa, M. J. Yañéz-Gascón, M. V. Selma et al., “Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model,” Journal of Agricultural and Food Chemistry, vol. 57, no. 6, pp. 2211–2220, 2009. View at Publisher · View at Google Scholar
  54. L. O. Brandenburg, M. Kipp, R. Lucius, T. Pufe, and C. J. Wruck, “Sulforaphane suppresses LPS-induced inflammation in primary rat microglia,” Inflammation Research, vol. 59, no. 6, pp. 443–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Nishida, S. Nishiumi, Y. Mizushina et al., “Monoacetylcurcumin strongly regulates inflammatory responses through inhibition of NF-κB activation,” International Journal of Molecular Medicine, vol. 25, no. 5, pp. 761–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Jia, I. Ivanov, Z. Z. Zlatev et al., “Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice,” British Journal of Nutrition, vol. 106, no. 4, pp. 519–529, 2011. View at Publisher · View at Google Scholar
  57. Y. H. Zhou, J. P. Yu, Y. F. Liu et al., “Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-α, NF-κBp65, IL-6) in TNBS-induced colitis in rats,” Mediators of Inflammation, vol. 2006, Article ID 92642, 9 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus