Table of Contents
ISRN Biotechnology
Volume 2013 (2013), Article ID 718352, 5 pages
http://dx.doi.org/10.5402/2013/718352
Research Article

Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

1Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
2Department of Biochemistry, Bayero University, Kano, Nigeria

Received 6 December 2012; Accepted 10 January 2013

Academic Editors: L. Betancor and J. J. Valdes

Copyright © 2013 Aliyu Salihu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. N. Gandhi, “Applications of lipase,” Journal of the American Oil Chemists' Society, vol. 74, no. 6, pp. 621–634, 1997. View at Google Scholar · View at Scopus
  2. R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Messias, B. Z. da Costa, V. M. G. de Lima et al., “Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources,” Enzyme and Microbial Technology, vol. 45, no. 6-7, pp. 426–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. D. Mahadik, U. S. Puntambekar, K. B. Bastawde, J. M. Khire, and D. V. Gokhale, “Production of acidic lipase by Aspergillus niger in solid state fermentation,” Process Biochemistry, vol. 38, no. 5, pp. 715–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. R. Singhania, C. R. Soccol, and A. Pandey, “Application of tropical agro-industrial residues as substrate for solid-state fermentation processes,” in Current Development in Solid-State Fermentation, A. Pandey, R. R. Soccol, and C. Larroche, Eds., vol. 4, pp. 412–442, 2008. View at Publisher · View at Google Scholar
  6. A. Pandey, C. R. Soccol, and D. Mitchell, “New developments in solid state fermentation: I-bioprocesses and products,” Process Biochemistry, vol. 35, no. 10, pp. 1153–1169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Menoncin, N. M. Domingues, D. M. G. Freire et al., “Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran,” Food and Bioprocess Technology, vol. 3, no. 4, pp. 537–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. Godoy, M. L. E. Gutarra, A. M. Castro, O. L. T. Machado, and D. M. G. Freire, “Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste,” Journal of Industrial Microbiology and Biotechnology, vol. 38, no. 8, pp. 945–953, 2011. View at Publisher · View at Google Scholar
  9. A. Salihu, M. Z. Alam, M. I. AbdulKarim, and H. M. Salleh, “Lipase production: an insight in the utilization of renewable agricultural residues,” Resource Conservation and Recycling, vol. 58, pp. 36–44, 2012. View at Publisher · View at Google Scholar
  10. A. P. Kempka, N. L. Lipke, T. Da Luz Fontoura Pinheiro et al., “Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation,” Bioprocess and Biosystems Engineering, vol. 31, no. 2, pp. 119–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Viniegra-González and E. Favela-Torres, “Why solid-state fermentation seems to be resistant to catabolite repression?” Food Technology and Biotechnology, vol. 44, no. 3, pp. 397–406, 2006. View at Google Scholar · View at Scopus
  12. J. C. M. Diaz, J. A. Rodríguez, S. Roussos et al., “Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures,” Enzyme and Microbial Technology, vol. 39, no. 5, pp. 1042–1050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Tella, “Preliminary studies on nasal decongestant activity from the seed of the shea butter tree, Butyrospermum parkii,” British Journal of Clinical Pharmacology, vol. 7, no. 5, pp. 495–497, 1979. View at Google Scholar · View at Scopus
  14. K. Schreckenberg, “The contribution of Shea butter (Vitellariaparadoxa C.F. Gaertner) to local livelihood in Benin,” in Forest Products, Livelihoods and Conservation, T. Sunderland and O. Ndoye, Eds., pp. 91–104, Centre for International Forestry Research, Bogor, Indonesia, 2004. View at Google Scholar
  15. G. Ruchi, G. Anshu, and S. K. Khare, “Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application,” Bioresource Technology, vol. 99, no. 11, pp. 4796–4802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Plackett and J. P. Burman, “The design of optimum multifactorial experiments,” Biometrika, vol. 33, no. 4, pp. 305–325, 1946. View at Google Scholar
  17. M. Z. Alam, A. Fakhru'l-Razi, and A. H. Molla, “Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge,” Journal of Environmental Sciences, vol. 16, no. 1, pp. 132–137, 2004. View at Google Scholar · View at Scopus
  18. D. M. Freire, E. M. Teles, E. P. Bon, and G. L. Sant'Anna Jr., “Lipase production by Penicillium restrictum in a bench-scale fermenter: effect of carbon and nitrogen nutrition, agitation, and aeration,” Applied Biochemistry and Biotechnology, vol. 63–65, pp. 409–421, 1997. View at Google Scholar · View at Scopus
  19. S. Ramachandran, S. K. Singh, C. Larroche, C. R. Soccol, and A. Pandey, “Oil cakes and their biotechnological applications: a review,” Bioresource Technology, vol. 98, no. 10, pp. 2000–2009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rajendran, A. Palanisamy, and V. Thangavelu, “Evaluation of Medium Components by Plackett-Burman Statistical Design for Lipase Production by Candida rugosa and Kinetic Modeling,” Chinese Journal of Biotechnology, vol. 24, no. 3, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Rajendran and V. Thangavelu, “Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233,” LWT-Food Science and Technology, vol. 42, no. 5, pp. 985–992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. J. Contesini, V. C. F. da Silva, R. F. Maciel, R. J. de Lima, F. F. C. Barros, and P. O. de Carvalho, “Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation,” The Journal of Microbiology, vol. 47, no. 5, pp. 563–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. L. Zhao, X. X. Chen, and J. H. Xu, “Strain improvement of Serratia marcescens ECU1010 and medium cost reduction for economic production of lipase,” World Journal of Microbiology and Biotechnology, vol. 26, no. 3, pp. 537–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. I. de Azeredo, P. M. Gomes, G. L. Sant'Anna Jr., L. R. Castilho, and D. M. G. Freire, “Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations,” Current Microbiology, vol. 54, no. 5, pp. 361–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Maliszewska and P. Mastalerz, “Production and some properties of lipase from Penicillium citrinum,” Enzyme and Microbial Technology, vol. 14, no. 3, pp. 190–193, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Bussamara, A. M. Fuentefria, E. S. de Oliveira et al., “Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation,” Bioresource Technology, vol. 101, no. 1, pp. 268–275, 2010. View at Publisher · View at Google Scholar · View at Scopus