Table of Contents
ISRN Renewable Energy
Volume 2013, Article ID 738326, 5 pages
http://dx.doi.org/10.1155/2013/738326
Research Article

Large-Area Crystalline Silicon Solar Cell Using Novel Antireflective Nanoabsorber Texturing Surface by Multihollow Cathode Plasma System and Spin-On Doping

Sponsored Research Laboratory, Meghnad Saha Institute of Technology, Kolkata 700150, India

Received 12 December 2012; Accepted 20 January 2013

Academic Editors: K. A. Kavadias, V. Makareviciene, and M. Souliotis

Copyright © 2013 Utpal Gangopadhyay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics, vol. 62, p. 243, 1987. View at Google Scholar
  2. S. Narayanan, High efficiency polycrystalline silicon solar cells [Ph.D. thesis], University of New South Wales, Sydney, Australia, 1989.
  3. P. Path, G. Willeke, E. Bucher et al., “Mechanical wafer engineering for high efficiency solar cells: an investigation of the induced surface damage,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference, pp. 1347–1350, 1994.
  4. M. Lipiński, P. Panek, Z. Witek, E. Beltowska, and R. Ciach, “Double porous silicon layer on multi-crystalline Si for photovoltaic application,” Solar Energy Materials and Solar Cells, vol. 72, no. 1–4, pp. 271–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Guerrero-Lemus, C. Hernández-Rodríguez, F. Ben-Hander, and J. M. Martínez- Duart, “Anodic and optical characterization of stain-etched porous silicon antireflection coatings,” Solar Energy Materials and Solar Cells, vol. 72, no. 1–4, p. 495, 2002. View at Google Scholar
  6. M. Saadoun, H. Ezzaouia, B. Bessaïs, M. F. Boujmil, and R. Bennaceur, “Formation of porous silicon for large-area silicon solar cells: a new method,” Solar Energy Materials and Solar Cells, vol. 59, no. 4, pp. 377–385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Majumdar, S. Chatterjee, M. Dhar, S. K. Dutta, and H. Saha, “Light trapping in layer-transferred quasi-monocrystalline porous silicon solar cell,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 51–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% Efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters, vol. 73, no. 14, p. 1991, 1998. View at Google Scholar
  9. S. Winderbaum, O. Reinhold, and F. Yun, “Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 46, no. 3, pp. 239–248, 1997. View at Google Scholar · View at Scopus
  10. H. Jansen, M. de Boer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II: the effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectronic Engineering, vol. 27, no. 1–4, pp. 475–480, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. D. S. Ruby, W. K. Schubert, J. M. Gee, and S. H. Zaidi, U.S. patent No. 6091021.
  12. D. S. Ruby and S. H. Zaidi, U.S. patent No. 6329296.
  13. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Physica Status Solidi, vol. 1, no. 2, pp. R53–R55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Applied Physics Letters, vol. 88, no. 20, Article ID 203107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Liu, S. Zhong, J. Liu, Y. Xia, and C. Li, “Silicon nitride film by inline PECVD for black silicon solar cells,” International Journal of Photoenergy, vol. 2012, Article ID 971093, 5 pages, 2012. View at Publisher · View at Google Scholar
  16. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18. 2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nature Nanotechnology, vol. 7, pp. 743–748, 2012. View at Google Scholar
  17. C. M. Horwitz, S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Eds., Handbook of Plasma Processing Technology, Noyes, Park Ridge, Ill, USA, 1990.
  18. S. K. Dutta, K. Mukhopadhyay, S. Bandyopadhyay, and H. Saha, “An improve technique for the determination of solar cell parameters,” Solid State Electronics, vol. 35, pp. 1667–1673, 1992. View at Google Scholar