Table of Contents
ISRN Neurology
Volume 2013, Article ID 752384, 17 pages
http://dx.doi.org/10.1155/2013/752384
Review Article

Production, Control, and Visual Guidance of Saccadic Eye Movements

Department of Psychology, Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA

Received 30 July 2013; Accepted 29 August 2013

Academic Editors: Y. Ohyagi, A. K. Petridis, D. Schiffer, L. Srivastava, and E. M. Wassermann

Copyright © 2013 Jeffrey D. Schall. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Fu, R. J. Tusa, M. J. Mustari, and V. E. Das, “Horizontal saccade disconjugacy in strabismic monkeys,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3107–3114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. C. Joshi and V. E. Das, “Responses of medial rectus motoneurons in monkeys with strabismus,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6697–6705, 2011. View at Google Scholar · View at Scopus
  3. L. Kiorpes, “Visual processing in amblyopia: animal studies,” Strabismus, vol. 14, no. 1, pp. 3–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Economides, D. L. Adams, C. M. Jocson, and J. C. Horton, “Ocular motor behavior in macaques with surgical exotropia,” Journal of Neurophysiology, vol. 98, no. 6, pp. 3411–3422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Lennerstrand, “Strabismus and eye muscle function,” Acta Ophthalmologica Scandinavica, vol. 85, no. 7, pp. 711–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. W. P. Madigan and W. M. Zein, “Recent developments in the field of superior oblique palsies,” Current Opinion in Ophthalmology, vol. 19, no. 5, pp. 379–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. E. Das, R. J. Leigh, M. Swann, and M. J. Thurtell, “Muscimol inactivation caudal to the interstitial nucleus of Cajal induces hemi-seesaw nystagmus,” Experimental Brain Research, vol. 205, no. 3, pp. 405–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Shichinohe, G. Barnes, T. Akao et al., “Oscillatory eye movements resembling pendular nystagmus in normal juvenile macaques,” Investigative Ophthalmology & Visual Science, vol. 52, no. 6, pp. 3458–3467, 2011. View at Google Scholar · View at Scopus
  9. B. A. Brooks, A. F. Fuchs, and D. Finocchio, “Saccadic eye movement deficits in the MPTP monkey model of Parkinson's disease,” Brain Research, vol. 383, no. 1-2, pp. 402–407, 1986. View at Google Scholar · View at Scopus
  10. H. Slovin, M. Abeles, E. Vaadia, I. Haalman, Y. Prut, and H. Bergman, “Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys,” Journal of Neurophysiology, vol. 81, no. 2, pp. 858–874, 1999. View at Google Scholar · View at Scopus
  11. D. L. Levy, A. B. Sereno, D. C. Gooding, and G. A. O'Driscoll, “Eye tracking dysfunction in schizophrenia: characterization and pathophysiology,” Current Topics in Behavioral Neurosciences, vol. 4, pp. 311–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Leigh and D. S. Zee, The Neurology of Eye Movements, Oxford University Press, New York, NY, USA, 4th edition, 2006.
  13. S. Liversedge, I. Gilchrist, and S. Everling, Oxford Handbook of Eye Movements, Oxford University Press, 2011.
  14. D. P. Munoz and B. C. Coe, “Saccade, search and orient—the neural control of saccadic eye movements,” European Journal of Neuroscience, vol. 33, no. 11, pp. 1945–1947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Henderson, “Eye movements and scene perception,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 593–606, Oxford University Press, 2011. View at Google Scholar
  16. K. Rayner and S. P. Liversedge, “Linguistic and cognitive influences on eye movements during reading,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 751–766, Oxford University Press, 2011. View at Google Scholar
  17. M. Land and B. Tatler, Looking and Acting: Vision and Eye Movements in Natural Behaviour, Oxford University Press, 2009.
  18. H.-K. Ko, M. Poletti, and M. Rucci, “Microsaccades precisely relocate gaze in a high visual acuity task,” Nature Neuroscience, vol. 13, no. 12, pp. 1549–1554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. M. Hayhoe and D. H. Ballard, “Mechanisms of gaze control in natural vision,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 607–620, Oxford University Press, 2011. View at Google Scholar
  20. H. Collewijn and E. Kowler, “The significance of microsaccades for vision and oculomotor control,” Journal of Vision, vol. 8, no. 14, article 20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. M. Hafed and J. J. Clark, “Microsaccades as an overt measure of covert attention shifts,” Vision Research, vol. 42, no. 22, pp. 2533–2545, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. T. S. Horowitz, E. M. Fine, D. E. Fencsik, S. Yurgenson, and J. M. Wolfe, “Fixational eye movements are not an index of covert attention,” Psychological Science, vol. 18, no. 4, pp. 356–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Laubrock, R. Kliegl, M. Rolfs, and R. Engbert, “When do microsaccades follow spatial attention?” Attention, Perception, and Psychophysics, vol. 72, no. 3, pp. 683–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. W. Royal, G. Sáry, J. D. Schall, and V. A. Casagrande, “Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus,” Experimental Brain Research, vol. 168, no. 1-2, pp. 62–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. M. Hafed and R. J. Krauzlis, “Microsaccadic suppression of visual bursts in the primate superior colliculus,” Journal of Neuroscience, vol. 30, no. 28, pp. 9542–9547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. C. Burr and M. C. Morrone, “Spatiotopic coding and remapping in humans,” Philosophical Transactions of the Royal Society B, vol. 366, no. 1564, pp. 504–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. N. J. Hall and C. L. Colby, “Remapping for visual stability,” Philosophical Transactions of the Royal Society B, vol. 366, pp. 528–539, 2011. View at Google Scholar
  28. M. Ibbotson and B. Krekelberg, “Visual perception and saccadic eye movements,” Current Opinion in Neurobiology, vol. 21, no. 4, pp. 553–558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Bridgeman, “Visual stability,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 511–521, Oxford University Press, 2011. View at Google Scholar
  30. W. M. Joiner, J. Cavanaugh, and R. H. Wurtz, “Modulation of shifting receptive field activity in frontal eye field by visual salience,” Journal of Neurophysiology, vol. 106, no. 3, pp. 1179–1190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. E. Angelaki, “The oculomotor plant and its role in three-dimensional eye orientation,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 135–150, Oxford University Press, 2011. View at Google Scholar
  32. K. E. Cullen and M. R. Van Horn, “The neural control of fast vs. slow vergence eye movements,” European Journal of Neuroscience, vol. 33, no. 11, pp. 2147–2154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Ugolini, F. Klam, M. D. Dans et al., “Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to “slow” and “fast” abducens motoneurons,” Journal of Comparative Neurology, vol. 498, no. 6, pp. 762–785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Miller, R. C. Davison, and P. D. Gamlin, “Motor nucleus activity fails to predict extraocular muscle forces in ocular convergence,” Journal of Neurophysiology, vol. 105, no. 6, pp. 2863–2873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Aksay, I. Olasagasti, B. D. Mensh, R. Baker, M. S. Goldman, and D. W. Tank, “Functional dissection of circuitry in a neural integrator,” Nature Neuroscience, vol. 10, no. 4, pp. 494–504, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Miri, K. Daie, A. B. Arrenberg, H. Baier, E. Aksay, and D. W. Tank, “Spatial gradients and multidimensional dynamics in a neural integrator circuit,” Nature Neuroscience, vol. 14, no. 9, pp. 1150–1161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Shinoda, Y. Sugiuchi, M. Takahashi, and Y. Izawa, “Neural substrate for suppression of omnipause neurons at the onset of saccades,” Annals of the New York Academy of Sciences, vol. 1233, no. 1, pp. 100–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Yoshida, Y. Iwamoto, S. Chimoto, and H. Shimazu, “Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats,” Journal of Neurophysiology, vol. 82, no. 3, pp. 1198–1208, 1999. View at Google Scholar · View at Scopus
  39. M. R. Van Horn, D. E. Mitchell, C. Massot, and K. E. Cullen, “Local neural processing and the generation of dynamic motor commands within the saccadic premotor network,” Journal of Neuroscience, vol. 30, no. 32, pp. 10905–10917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Kanda, Y. Iwamoto, K. Yoshida, and H. Shimazu, “Glycinergic inputs cause the pause of pontine omnipause neurons during saccades,” Neuroscience Letters, vol. 413, no. 1, pp. 16–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Robinson, “Oculomotor control signals,” in Basic Mechanisms of Ocular Motility and Their Clinical Implications, pp. 337–374, Pergamon Press, Oxford, UK, 1975. View at Google Scholar
  42. J. C. Rucker, S. H. Ying, W. Moore et al., “Do brainstem omnipause neurons terminate saccades?” Annals of the New York Academy of Sciences, vol. 1233, no. 1, pp. 48–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. L. M. Optican, “Field theory of saccade generation: temporal-to-spatial transform in the superior colliculus,” Vision Research, vol. 35, no. 23-24, pp. 3313–3320, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Soetedjo, C. R. S. Kaneko, and A. F. Fuchs, “Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey,” Journal of Neurophysiology, vol. 87, no. 6, pp. 2778–2789, 2002. View at Google Scholar · View at Scopus
  45. P. Their, “The oculomotor cerebellum,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 173–194, Oxford University Press, 2011. View at Google Scholar
  46. N. P. Bichot and J. D. Schall, “Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return,” Journal of Neuroscience, vol. 22, no. 11, pp. 4675–4685, 2002. View at Google Scholar · View at Scopus
  47. E. E. Emeric, J. W. Brown, L. Boucher et al., “Influence of history on saccade countermanding performance in humans and macaque monkeys,” Vision Research, vol. 47, no. 1, pp. 35–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Girard and A. Berthoz, “From brainstem to cortex: computational models of saccade generation circuitry,” Progress in Neurobiology, vol. 77, no. 4, pp. 215–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Jürgens, W. Becker, and H. H. Kornhuber, “Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback,” Biological Cybernetics, vol. 39, no. 2, pp. 87–96, 1981. View at Google Scholar · View at Scopus
  50. C. A. Scudder, “A new local feedback model of the saccadic burst generator,” Journal of Neurophysiology, vol. 59, no. 5, pp. 1455–1475, 1988. View at Google Scholar · View at Scopus
  51. G. Gancarz and S. Grossberg, “A neural model of the saccade generator in the reticular formation,” Neural Networks, vol. 11, no. 7-8, pp. 1159–1174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Quaia, P. Lefèvre, and L. M. Optican, “Model of the control of saccades by superior colliculus and cerebellum,” Journal of Neurophysiology, vol. 82, no. 2, pp. 999–1018, 1999. View at Google Scholar · View at Scopus
  53. T. P. Trappenberg, M. C. Dorris, D. P. Munoz, and R. M. Klein, “A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus,” Journal of Cognitive Neuroscience, vol. 13, no. 2, pp. 256–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. C.-C. Lo and X.-J. Wang, “Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks,” Nature Neuroscience, vol. 9, no. 7, pp. 956–963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. B. A. Purcell, R. P. Heitz, J. Y. Cohen, J. D. Schall, G. D. Logan, and T. J. Palmeri, “Neurally constrained modeling of perceptual decision making,” Psychological Review, vol. 117, no. 4, pp. 1113–1143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. A. Purcell, J. D. Schall, G. D. Logan, and T. J. Palmeri, “From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search,” Journal of Neuroscience, vol. 32, no. 10, pp. 3433–3446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. D. L. Sparks, “Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset,” Brain Research, vol. 156, no. 1, pp. 1–16, 1978. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Fecteau and D. P. Munoz, “Warning signals influence motor processing,” Journal of Neurophysiology, vol. 97, no. 2, pp. 1600–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. J. W. Brown, D. P. Hanes, J. D. Schall, and V. Stuphorn, “Relation of frontal eye field activity to saccade initiation during a countermanding task,” Experimental Brain Research, vol. 190, no. 2, pp. 135–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. G. F. Woodman, M.-S. Kang, K. Thompson, and J. D. Schall, “The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow: research article,” Psychological Science, vol. 19, no. 2, pp. 128–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Pouget, G. D. Logan, T. J. Palmeri, L. Boucher, M. Paré, and J. D. Schall, “Neural basis of adaptive response time adjustment during saccade countermanding,” Journal of Neuroscience, vol. 31, no. 35, pp. 12604–12612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. P. L. Smith and R. Ratcliff, “Psychology and neurobiology of simple decisions,” Trends in Neurosciences, vol. 27, no. 3, pp. 161–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Verbruggen and G. D. Logan, “Response inhibition in the stop-signal paradigm,” Trends in Cognitive Sciences, vol. 12, no. 11, pp. 418–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. D. M. Barch, T. S. Braver, C. S. Carter, R. A. Poldrack, and T. W. Robbins, “CNTRICS final task selection: executive control,” Schizophrenia Bulletin, vol. 35, no. 1, pp. 115–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Lipszyc and R. Schachar, “Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task,” Journal of the International Neuropsychological Society, vol. 16, no. 6, pp. 1064–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. K. N. Thakkar, J. D. Schall, L. Boucher, G. D. Logan, and S. Park, “Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia,” Biological Psychiatry, vol. 69, no. 1, pp. 55–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. M. M. G. Walton and N. J. Gandhi, “Behavioral evaluation of movement cancellation,” Journal of Neurophysiology, vol. 96, no. 4, pp. 2011–2024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A. R. Aron and R. A. Poldrack, “Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus,” Journal of Neuroscience, vol. 26, no. 9, pp. 2424–2433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. R. Aron, T. E. Behrens, S. Smith, M. J. Frank, and R. A. Poldrack, “Triangulating a cognitive control network using diffusion-weighted Magnetic Resonance Imaging (MRI) and functional MRI,” Journal of Neuroscience, vol. 27, no. 14, pp. 3743–3752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. B. B. Zandbelt and M. Vink, “On the role of the striatum in response inhibition,” PLoS ONE, vol. 5, no. 11, Article ID e13848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Murthy, S. Ray, S. M. Shorter, J. D. Schall, and K. G. Thompson, “Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation,” Journal of Neurophysiology, vol. 101, no. 5, pp. 2485–2506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Y. Cohen, P. Pouget, R. P. Heitz, G. F. Woodman, and J. D. Schall, “Biophysical support for functionally distinct cell types in the frontal eye field,” Journal of Neurophysiology, vol. 101, no. 2, pp. 912–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Johnston, J. F. X. DeSouza, and S. Everling, “Monkey prefrontal cortical pyramidal and putative interneurons exhibit differential patterns of activity between prosaccade and antisaccade tasks,” Journal of Neuroscience, vol. 29, no. 17, pp. 5516–5524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Vigneswaran, A. Kraskov, and R. N. Lemon, “Large identified pyramidal cells in macaque motor and premotor cortex exhibit “Thin Spikes”: implications for cell type classification,” Journal of Neuroscience, vol. 31, no. 40, pp. 14235–14242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. L. H. Snyder, A. P. Batista, and R. A. Andersen, “Intention-related activity in the posterior parietal cortex: a review,” Vision Research, vol. 40, no. 10-12, pp. 1433–1441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Brunamonti, N. W. D. Thomas, and M. Paré, “The activity patterns of lateral intraparietal area neurons is not sufficient to control visually guided saccadic eye movements,” Program No. 855.18., Neuroscience Meeting Planner Society for Neuroscience, Washington, DC, USA, 2008.
  77. J. D. Schall, “On the role of frontal eye field in guiding attention and saccades,” Vision Research, vol. 44, no. 12, pp. 1453–1467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Wong-Lin, P. Eckhoff, P. Holmes, and J. D. Cohen, “Optimal performance in a countermanding saccade task,” Brain Research, vol. 1318, pp. 178–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. C.-C. Lo, L. Boucher, M. Paré, J. D. Schall, and X.-J. Wang, “Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model,” Journal of Neuroscience, vol. 29, no. 28, pp. 9059–9071, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. M. Hafed, L. Goffart, and R. J. Krauzlis, “A neural mechanism for microsaccade generation in the primate superior colliculus,” Science, vol. 323, no. 5916, pp. 940–943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. D. C. Godlove, A. K. Garr, G. F. Woodman, and J. D. Schall, “Measurement of the extraocular spike potential during saccade countermanding,” Journal of Neurophysiology, vol. 106, no. 1, pp. 104–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. O. Hikosaka, Y. Takikawa, and R. Kawagoe, “Role of the basal ganglia in the control of purposive saccadic eye movements,” Physiological Reviews, vol. 80, no. 3, pp. 953–978, 2000. View at Google Scholar · View at Scopus
  83. J. Shires, S. Joshi, and M. A. Basso, “Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements,” Current Opinion in Neurobiology, vol. 20, no. 6, pp. 717–725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. D. Schall and L. Boucher, “Executive control of gaze by the frontal lobes,” Cognitive, Affective and Behavioral Neuroscience, vol. 7, no. 4, pp. 396–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. P. G. Bissett and G. D. Logan, “Post-stop-signal slowing: strategies dominate reflexes and implicit learning,” Journal of Experimental Psychology: Human Perception and Performance, 2011. View at Google Scholar
  86. K. R. Ridderinkhof, M. Ullsperger, E. A. Crone, and S. Nieuwenhuis, “The role of the medial frontal cortex in cognitive control,” Science, vol. 306, no. 5695, pp. 443–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. W. J. Gehring, Y. Liu, J. M. Orr, and J. Carp, “The error-related negativity (ERN/Ne),” in Oxford Handbook of Event-Related Potential Components, S.J. Luck and E. Kappenman, Eds., pp. 231–291, Oxford University Press, New York, NY, USA, 2011. View at Google Scholar
  88. E. E. Emeric, J. W. Brown, M. Leslie, P. Pouget, V. Stuphorn, and J. D. Schall, “Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex,” Journal of Neurophysiology, vol. 99, no. 2, pp. 759–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. E. E. Emeric, M. Leslie, P. Pouget, and J. D. Schall, “Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field,” Journal of Neurophysiology, vol. 104, no. 3, pp. 1523–1537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. D. C. Godlove, E. E. Emeric, C. M. Segovis, M. S. Young, J. D. Schall, and G. F. Woodman, “Event-related potentials elicited by errors during the stop-signal task—I. macaque monkeys,” Journal of Neuroscience, vol. 31, no. 44, pp. 15640–15649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. B. Holroyd, N. Yeung, M. G. H. Coles, and J. D. Cohen, “A mechanism for error detection in speeded response time tasks,” Journal of Experimental Psychology, vol. 134, no. 2, pp. 163–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Nakamura, M. R. Roesch, and C. R. Olson, “Neuronal activity in Macaque SEF and ACC during performance of tasks involving conflict,” Journal of Neurophysiology, vol. 93, no. 2, pp. 884–908, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. M. M. Botvinick, C. S. Carter, T. S. Braver, D. M. Barch, and J. D. Cohen, “Conflict monitoring and cognitive control,” Psychological Review, vol. 108, no. 3, pp. 624–652, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Yeung, M. M. Botvinick, and J. D. Cohen, “The neural basis of error detection: conflict monitoring and the error-related negativity,” Psychological Review, vol. 111, no. 4, pp. 931–959, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. M. W. Cole, N. Yeung, W. A. Freiwald, and M. Botvinick, “Cingulate cortex: diverging data from humans and monkeys,” Trends in Neurosciences, vol. 32, no. 11, pp. 566–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. W. Cole, N. Yeung, W. A. Freiwald, and M. Botvinick, “Conflict over cingulate cortex: between-species differences in cingulate may support enhanced cognitive flexibility in humans,” Brain, Behavior and Evolution, vol. 75, no. 4, pp. 239–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. J. D. Schall and E. E. Emeric, “Conflict in cingulate cortex function between humans and macaque monkeys: more apparent than real. Comment on “Cingulate cortex: diverging data from humans and monkeys”,” Brain, Behavior and Evolution, vol. 75, no. 4, pp. 237–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Ratcliff and G. McKoon, “The diffusion decision model: theory and data for two-choice decision tasks,” Neural Computation, vol. 20, no. 4, pp. 873–922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. W. S. Geisler and L. K. Cormack, “Models of overt attention,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 439–454, Oxford University Press, 2011. View at Google Scholar
  100. N. P. Bichot and R. Desimone, “Finding a face in the crowd: parallel and serial neural mechanisms of visual selection,” Progress in Brain Research, vol. 155, pp. 147–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. J. D. Schall and J. Y. Cohen, “The neural basis of saccade target selection,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., Oxford University Press, 2011. View at Google Scholar
  102. J. W. Bisley and M. E. Goldberg, “Attention, intention, and priority in the parietal lobe,” Annual Review of Neuroscience, vol. 33, pp. 1–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Constantinidis, “Posterior parietal mechanisms of visual attention,” Reviews in the Neurosciences, vol. 17, no. 4, pp. 415–427, 2006. View at Google Scholar · View at Scopus
  104. J. Gottlieb and P. Balan, “Attention as a decision in information space,” Trends in Cognitive Sciences, vol. 14, no. 6, pp. 240–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Wardak, E. Olivier, and J.-R. Duhamel, “The relationship between spatial attention and saccades in the frontoparietal network of the monkey,” European Journal of Neuroscience, vol. 33, no. 11, pp. 1973–1981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Paré and M. C. Dorris, “The role of posterior parietal cortex in the regulation of saccadic eye movements,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 257–278, Oxford University Press, 2011. View at Google Scholar
  107. L. Itti and C. Koch, “Computational modelling of visual attention,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. J. K. Tsotsos, A Computational Perspective on Visual Attention, MIT Press, 2011.
  109. E. Awh, K. M. Armstrong, and T. Moore, “Visual and oculomotor selection: links, causes and implications for spatial attention,” Trends in Cognitive Sciences, vol. 10, no. 3, pp. 124–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Kristjansson, “The intriguing interactive relationship between visual attention and saccadic eye movements,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 455–470, Oxford University Press, 2011. View at Google Scholar
  111. J. D. Schall and K. G. Thompson, “Neural mechanisms of saccade target selection: evidence for a stage theory of attention and action,” in Cognitive Neuroscience of Attention, M. I. Posner, Ed., pp. 242–256, Guileford Press, 2012. View at Google Scholar
  112. J. D. Schall, A. Morel, D. J. King, and J. Bullier, “Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams,” Journal of Neuroscience, vol. 15, no. 6, pp. 4464–4487, 1995. View at Google Scholar · View at Scopus
  113. N. T. Markov, P. Misery, A. Falchier et al., “Weight consistency specifies regularities of macaque cortical networks,” Cerebral Cortex, vol. 21, no. 6, pp. 1254–1272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. P. J. May, “The mammalian superior colliculus: laminar structure and connections,” Progress in Brain Research, vol. 151, pp. 321–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991. View at Google Scholar · View at Scopus
  116. M. T. Schmolesky, Y. Wang, D. P. Hanes et al., “Signal timing access the macaque visual system,” Journal of Neurophysiology, vol. 79, no. 6, pp. 3272–3278, 1998. View at Google Scholar · View at Scopus
  117. P. Barone, A. Batardiere, K. Knoblauch, and H. Kennedy, “Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hiearchical rank and intimates the operation of a distance rule,” Journal of Neuroscience, vol. 20, no. 9, pp. 3263–3281, 2000. View at Google Scholar · View at Scopus
  118. J. C. Anderson, H. Kennedy, and K. A. C. Martin, “Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey,” Journal of Neuroscience, vol. 31, no. 30, pp. 10872–10881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. F. H. Hamker and M. Zirnsak, “V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field,” Neural Networks, vol. 19, no. 9, pp. 1371–1382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Ogawa and H. Komatsu, “Target selection in area V4 during a multidimensional visual search task,” Journal of Neuroscience, vol. 24, no. 28, pp. 6371–6382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. T. Ogawa and H. Komatsu, “Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search,” Experimental Brain Research, vol. 173, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. G. Mirabella, G. Bertini, I. Samengo et al., “Neurons in area V4 of the macaque translate attended visual features into behaviorally relevant categories,” Neuron, vol. 54, no. 2, pp. 303–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. R. E. B. Mruczek and D. L. Sheinberg, “Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search,” Journal of Neuroscience, vol. 27, no. 11, pp. 2825–2836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. J. A. Mazer and J. L. Gallant, “Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map,” Neuron, vol. 40, no. 6, pp. 1241–1250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. N. P. Bichot, A. F. Rossi, and R. Desimone, “Parallel and serial neural mechanisms for visual search in macaque area V4,” Science, vol. 308, no. 5721, pp. 529–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. S. V. David, B. Y. Hayden, J. A. Mazer, and J. L. Gallant, “Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision,” Neuron, vol. 59, no. 3, pp. 509–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Saruwatari, M. Inoue, and A. Mikami, “Modulation of V4 shifts from dependent to independent on feature during target selection,” Neuroscience Research, vol. 60, no. 3, pp. 327–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. G. T. Buracas and T. D. Albright, “Modulation of neuronal responses during covert search for visual feature conjunctions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16853–16858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. I. Opris, A. Barborica, and V. P. Ferrera, “Microstimulation of the dorsolateral prefrontal cortex biases saccade target selection,” Journal of Cognitive Neuroscience, vol. 17, no. 6, pp. 893–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. A. F. Rossi, N. P. Bichot, R. Desimone, and L. G. Ungerleider, “Top-down attentional deficits in Macaques with lesions of lateral prefrontal cortex,” Journal of Neuroscience, vol. 27, no. 42, pp. 11306–11314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. R. P. Hasegawa, M. Matsumoto, and A. Mikami, “Search target selection in monkey prefrontal cortex,” Journal of Neurophysiology, vol. 84, no. 3, pp. 1692–1696, 2000. View at Google Scholar · View at Scopus
  132. C. Constantinidis, M. N. Franowicz, and P. S. Goldman-Rakic, “The sensory nature of mnemonic representation in the primate prefrontal cortex,” Nature Neuroscience, vol. 4, no. 3, pp. 311–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Everling, C. J. Tinsley, D. Gaffan, and J. Duncan, “Selective representation of task-relevant objects and locations in the monkey prefrontal cortex,” European Journal of Neuroscience, vol. 23, no. 8, pp. 2197–2214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. H.-H. Zhou and K. G. Thompson, “Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated,” Vision Research, vol. 49, no. 10, pp. 1205–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. N. P. Bichot, J. D. Schall, and K. G. Thompson, “Visual feature selectivity in frontal eye fields induced by experience in mature macaques,” Nature, vol. 381, no. 6584, pp. 697–699, 1996. View at Publisher · View at Google Scholar · View at Scopus
  136. K. G. Thompson, D. P. Hanes, N. P. Bichot, and J. D. Schall, “Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search,” Journal of Neurophysiology, vol. 76, no. 6, pp. 4040–4055, 1996. View at Google Scholar · View at Scopus
  137. T. Sato, A. Murthy, K. G. Thompson, and J. D. Schall, “Search efficiency but not response interference affects visual selection in frontal eye field,” Neuron, vol. 30, no. 2, pp. 583–591, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Y. Cohen, R. P. Heitz, G. F. Woodman, and J. D. Schall, “Neural basis of the set-size effect in frontal eye field: timing of attention during visual search,” Journal of Neurophysiology, vol. 101, no. 4, pp. 1699–1704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. K.-M. Lee and E. L. Keller, “Neural activity in the frontal eye fields modulated by the number of alternatives in target choice,” Journal of Neuroscience, vol. 28, no. 9, pp. 2242–2251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. R. M. McPeek, “Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades,” Journal of Neurophysiology, vol. 96, no. 5, pp. 2699–2711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. J. P. Gottlieb, M. Kusunoki, and M. E. Goldberg, “The representation of visual salience in monkey parietal cortex,” Nature, vol. 391, no. 6666, pp. 481–484, 1998. View at Publisher · View at Google Scholar · View at Scopus
  142. P. F. Balan, J. Oristaglio, D. M. Schneider, and J. Gottlieb, “Neuronal correlates of the set-size effect in monkey lateral intraparietal area,” PLoS Biology, vol. 6, no. 7, article e158, 2008. View at Google Scholar · View at Scopus
  143. T. J. Buschman and E. K. Miller, “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices,” Science, vol. 315, no. 5820, pp. 1860–1864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Constantinidis and M. A. Steinmetz, “Posterior parietal cortex automatically encodes the location of salient stimuli,” Journal of Neuroscience, vol. 25, no. 1, pp. 233–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. A. E. Ipata, A. L. Gee, M. E. Goldberg, and J. W. Bisley, “Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task,” Journal of Neuroscience, vol. 26, no. 14, pp. 3656–3661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. T. Ogawa and H. Komatsu, “Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex,” Journal of Neurophysiology, vol. 101, no. 2, pp. 721–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. N. W. D. Thomas and M. Paré, “Temporal processing of saccade targets in parietal cortex area LIP during visual search,” Journal of Neurophysiology, vol. 97, no. 1, pp. 942–947, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. B. Kim and M. A. Basso, “Saccade target selection in the superior colliculus: a signal detection theory approach,” Journal of Neuroscience, vol. 28, no. 12, pp. 2991–3007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. R. M. McPeek and E. L. Keller, “Saccade target selection in the superior colliculus during a visual search task,” Journal of Neurophysiology, vol. 88, no. 4, pp. 2019–2034, 2002. View at Google Scholar · View at Scopus
  150. K. Shen and M. Paré, “Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search,” Journal of Vision, vol. 7, no. 5, article 15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. B. J. White and D. P. Munoz, “Separate visual signals for saccade initiation during target selection in the primate superior colliculus,” Journal of Neuroscience, vol. 31, no. 5, pp. 1570–1578, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. M. A. Basso and R. H. Wurtz, “Neuronal activity in substantia nigra pars reticulata during target selection,” Journal of Neuroscience, vol. 22, no. 5, pp. 1883–1894, 2002. View at Google Scholar · View at Scopus
  153. M. T. Wyder, D. P. Massoglia, and T. R. Stanford, “Contextual modulation of central thalamic delay-period activity: representation of visual and saccadic goals,” Journal of Neurophysiology, vol. 91, no. 6, pp. 2628–2648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. A. N. Phillips and M. A. Segraves, “Predictive activity in Macaque frontal eye field neurons during natural scene searching,” Journal of Neurophysiology, vol. 103, no. 3, pp. 1238–1252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. J. O'Shea, N. G. Muggleton, A. Cowey, and V. Walsh, “Timing of target discrimination in human frontal eye fields,” Journal of Cognitive Neuroscience, vol. 16, no. 6, pp. 1060–1067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Wardak, G. Ibos, J.-R. Duhamel, and E. Olivier, “Contribution of the monkey frontal eye field to covert visual attention,” Journal of Neuroscience, vol. 26, no. 16, pp. 4228–4235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. I. E. Monosov and K. G. Thompson, “Frontal eye field activity enhances object identification during covert visual search,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3656–3672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. R. M. McPeek, “Reversal of a distractor effect on saccade target selection after superior colliculus inactivation,” Journal of Neurophysiology, vol. 99, no. 5, pp. 2694–2702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. L. P. Lovejoy and R. J. Krauzlis, “Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments,” Nature Neuroscience, vol. 13, no. 2, pp. 261–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. C. Wardak, E. Olivier, and J.-R. Duhamel, “A deficit in covert attention after parietal cortex inactivation in the monkey,” Neuron, vol. 42, no. 3, pp. 501–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. P. F. Balan and J. Gottlieb, “Functional significance of nonspatial information in monkey lateral intraparietal area,” Journal of Neuroscience, vol. 29, no. 25, pp. 8166–8176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. K. Mirpour, W. S. Ong, and J. W. Bisley, “Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search,” Journal of Neurophysiology, vol. 104, no. 6, pp. 3021–3028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. T. R. Sato and J. D. Schall, “Effects of stimulus-response compatibility on neural selection in frontal eye field,” Neuron, vol. 38, no. 4, pp. 637–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. G. F. Woodman, M.-S. Kang, A. F. Rossi, and J. D. Schall, “Nonhuman primate event-related potentials indexing covert shifts of attention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 15111–15116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. B. Y. Hayden and J. L. Gallant, “Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4,” Neuron, vol. 47, no. 5, pp. 637–643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  166. K. G. Thompson, N. P. Bichot, and T. R. Sato, “Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience,” Journal of Neurophysiology, vol. 93, no. 1, pp. 337–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. R. P. Heitz, J. Y. Cohen, G. F. Woodman, and J. D. Schall, “Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activity,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2433–2441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Mirpour, F. Arcizet, W. S. Ong, and J. W. Bisley, “Been there, seen that: a neural mechanism for performing efficient visual search,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3481–3491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. K. G. Thompson, N. P. Bichot, and J. D. Schall, “Dissociation of visual discrimination from saccade programming in macaque frontal eye field,” Journal of Neurophysiology, vol. 77, no. 2, pp. 1046–1050, 1997. View at Google Scholar · View at Scopus
  170. F. Arcizet, K. Mirpour, and J. W. Bisley, “A pure salience response in posterior parietal cortex,” Cerebral Cortex, vol. 21, no. 11, pp. 2498–2506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. K. G. Thompson, K. L. Biscoe, and T. R. Sato, “Neuronal basis of covert spatial attention in the frontal eye field,” Journal of Neuroscience, vol. 25, no. 41, pp. 9479–9487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. J. Oristaglio, D. M. Schneider, P. F. Balan, and J. Gottlieb, “Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area,” Journal of Neuroscience, vol. 26, no. 32, pp. 8310–8319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. A. E. Ipata, A. L. Gee, J. W. Bisley, and M. E. Goldberg, “Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals,” Experimental Brain Research, vol. 192, no. 3, pp. 479–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. N. P. Bichot, K. G. Thompson, S. C. Rao, and J. D. Schall, “Reliability of macaque frontal eye field neurons signaling saccade targets during visual search,” Journal of Neuroscience, vol. 21, no. 2, pp. 713–725, 2001. View at Google Scholar · View at Scopus
  175. B. Kim and M. A. Basso, “A probabilistic strategy for understanding action selection,” Journal of Neuroscience, vol. 30, no. 6, pp. 2340–2355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Y. Cohen, E. A. Crowder, R. P. Heitz et al., “Cooperation and competition among frontal eye field neurons during visual target selection,” Journal of Neuroscience, vol. 30, no. 9, pp. 3227–3238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. T. Ogawa and H. Komatsu, “Differential temporal storage capacity in the baseline activity of neurons in macaque frontal eye field and area V4,” Journal of Neurophysiology, vol. 103, no. 5, pp. 2433–2445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. G. G. Gregoriou, S. J. Gotts, H. Zhou, and R. Desimone, “High-Frequency, long-range coupling between prefrontal and visual cortex during attention,” Science, vol. 324, no. 5931, pp. 1207–1210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Ray and J. H. R. Maunsell, “Differences in gamma frequencies across visual cortex restrict their possible use in computation,” Neuron, vol. 67, no. 5, pp. 885–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. G. F. Woodman and S. J. Luck, “Electrophysiological measurement of rapid shifts of attention during visual search,” Nature, vol. 400, no. 6747, pp. 867–869, 1999. View at Publisher · View at Google Scholar · View at Scopus
  181. C. N. Boehler, J. K. Tsotsos, M. A. Schoenfeld, H.-J. Heinze, and J.-M. Hopf, “Neural mechanisms of surround attenuation and distractor competition in visual search,” Journal of Neuroscience, vol. 31, no. 14, pp. 5213–5224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  182. M. S. Howell Young, R. P. Heitz, J. D. Schall, and G. F. Woodman, “Modeling the neural generators of monkey event-related potentials indexing covert shift of attention,” Program No. 304.1 Neuroscience Meeting Planner. Society for Neuroscience San Diego, Calif, USA, 2010.
  183. I. E. Monosov, J. C. Trageser, and K. G. Thompson, “Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field,” Neuron, vol. 57, no. 4, pp. 614–625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  184. J. Y. Cohen, R. P. Heitz, J. D. Schall, and G. F. Woodman, “On the origin of event-related potentials indexing covert attentional selection during visual search,” Journal of Neurophysiology, vol. 102, no. 4, pp. 2375–2386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. I. E. Monosov, D. L. Sheinberg, and K. G. Thompson, “Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 13105–13110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. T. Moore and M. Fallah, “Microstimulation of the frontal eye field and its effects on covert spatial attention,” Journal of Neurophysiology, vol. 91, no. 1, pp. 152–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. K. M. Armstrong, J. K. Fitzgerald, and T. Moore, “Changes in visual receptive fields with microstimulation of frontal cortex,” Neuron, vol. 50, no. 5, pp. 791–798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  188. L. B. Ekstrom, P. R. Roelfsema, J. T. Arsenault, H. Kolster, and W. Vanduffel, “Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field,” Journal of Neuroscience, vol. 29, no. 34, pp. 10683–10694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. P. C. J. Taylor, A. C. Nobre, and M. F. S. Rushworth, “FEF TMS affects visual cortical activity,” Cerebral Cortex, vol. 17, no. 2, pp. 391–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. R. Walker, P. Techawachirakul, and P. Haggard, “Frontal eye field stimulation modulates the balance of salience between target and distractors,” Brain Research, vol. 1270, pp. 54–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. M. Usher and J. L. McClelland, “The time course of perceptual choice: the leaky, competing accumulator model,” Psychological Review, vol. 108, no. 3, pp. 550–592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  192. J. M. Wolfe, E. M. Palmer, and T. S. Horowitz, “Reaction time distributions constrain models of visual search,” Vision Research, vol. 50, no. 14, pp. 1304–1311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. J. C. Trageser, I. E. Monosov, Y. Zhou, and K. G. Thompson, “A perceptual representation in the frontal eye field during covert visual search that is more reliable than the behavioral report,” European Journal of Neuroscience, vol. 28, no. 12, pp. 2542–2549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. A. Murthy, S. Ray, S. M. Shorter, E. G. Priddy, J. D. Schall, and K. G. Thompson, “Frontal eye field contributions to rapid corrective saccades,” Journal of Neurophysiology, vol. 97, no. 2, pp. 1457–1469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. C.-H. Juan, S. M. Shorter-Jacobi, and J. D. Schall, “Dissociation of spatial attention and saccade preparation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 43, pp. 15541–15544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  196. D. L. Sparks and L. E. Mays, “Spatial localization of saccade targets—I. Compensation for stimulation-induced perturbations in eye position,” Journal of Neurophysiology, vol. 49, no. 1, pp. 45–63, 1983. View at Google Scholar · View at Scopus
  197. C.-H. Juan, N. G. Muggleton, O. J. L. Tzeng, D. L. Hung, A. Cowey, and V. Walsh, “Segregation of visual selection and saccades in human frontal eye fields,” Cerebral Cortex, vol. 18, no. 10, pp. 2410–2415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. D. T. Smith and T. Schenk, “Enhanced probe discrimination at the location of a colour singleton,” Experimental Brain Research, vol. 181, no. 2, pp. 367–375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. P. Pouget, I. Stepniewska, and E. A. Crowder, “Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection,” Frontiers in Neuroanatomy, vol. 3, 2009. View at Google Scholar
  200. J. R. Platt, “Strong Inference: certain systematic methods of scientific thinking may produce much more rapid progress than others,” Science, vol. 146, pp. 347–353, 1964. View at Google Scholar
  201. J. P. A. Ioannidis, “Why most published research findings are false,” PLoS Medicine, vol. 2, no. 8, article e124, 2005. View at Publisher · View at Google Scholar · View at Scopus