Table of Contents Author Guidelines Submit a Manuscript
ISRN Physical Chemistry
Volume 2013 (2013), Article ID 753139, 16 pages
Research Article

Stability Analysis and Frontier Orbital Study of Different Glycol and Water Complex

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

Received 20 October 2012; Accepted 7 November 2012

Academic Editors: J. G. Han, T. Kar, and A. M. Koster

Copyright © 2013 Snehanshu Pal and T. K. Kundu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A detailed theoretical study of hydrogen-bond formation in different polyethylene glycol + water complex and dipropylene glycol + water have been performed by Hartree Fock (HF) method, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT) using 6-31++G(d,p) basis set. B3LYP DFT-D, WB97XD, M06, and M06-2X functionals have been used to describe highly dispersive hydrogen-bond formation appropriately. Geometrical parameters, interaction energies, deformation energies, deviation of potential energy curves of hydrogen bonded O–H from that of free O–H, frontier orbitals, and charge transfer have been studied to analyze stability and nature of hydrogen bond formation of various glycol and water complexes. It is found that WB97XD is best among all the applied DFT functionals to describe hydrogen bond interaction, and intermolecular hydrogen bonds have higher covalent character and accordingly higher strength when glycol acts as proton donor for glycol + 1 water complex system.