Table of Contents
ISRN Optics
Volume 2013 (2013), Article ID 785162, 22 pages
http://dx.doi.org/10.1155/2013/785162
Review Article

Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre-Based Metamaterials

Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

Received 10 September 2012; Accepted 4 October 2012

Academic Editors: M. Hu and D. Kouznetsov

Copyright © 2013 Alexander Argyros. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Van Eijkelenborg, M. C. J. Large, A. Argyros et al., “Microstructured polymer optical fibre,” Optics Express, vol. 9, no. 7, pp. 319–327, 2001. View at Google Scholar · View at Scopus
  2. M. A. Van Eijkelenborg, A. Argyros, G. Barton et al., “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Optical Fiber Technology, vol. 9, no. 4, pp. 199–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. J. Large, A. Argyros, F. Cox et al., “Microstructured polymer optical fibres: new opportunities and challenges,” Molecular Crystals and Liquid Crystals, vol. 446, pp. 219–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres, Springer, Berlin, Germany, 2007.
  5. A. Argyros, “Microstructured polymer optical fibres,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1571–1579, 2009. View at Google Scholar
  6. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, no. 19, pp. 1547–1549, 1996. View at Google Scholar · View at Scopus
  7. P. St. J. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358–362, 2003. View at Google Scholar
  8. J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. S. J. Russell, “Photonic-crystal fibers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4729–4749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook, Springer, Belrin, Germany, 2008.
  11. A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibres,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 192–197, 2012. View at Google Scholar
  12. R. Provo, S. G. Murdoch, J. D. Harvey, R. Lwin, S. G. Leon-Saval, and A. Argyros, “Error free 9. 5 Gb/s transmission over 50 m of multimode microstructured polymer optical fibres,” in Proceedings of the Quantum Electronics Conference & Lasers and Electro-Optics Conference, pp. 784–786, Sydney, Australia. View at Publisher · View at Google Scholar
  13. Y. Shi, C. Okonkwo, A. Argyros et al., “7. 3 Gbit/s transmission over microstructured polymer optical fiber for in-home networks,” IEEE Photonics Technology Letters, vol. 24, no. 14, pp. 1257–1259, 2012. View at Google Scholar
  14. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Materials, vol. 1, no. 1, pp. 26–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, no. 2, pp. 97–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics, vol. 1, no. 9, pp. 517–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports on Progress in Physics, vol. 70, no. 8, article no. R02, pp. 1325–1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. ZOmega Terahertz Corporation, “The Terahertz Wave Ebook,” 2012, http://dl.z-thz.com/eBook/zomega_ebook_pdf_1206_sr.pdf.
  19. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. 513–517, 2006. View at Google Scholar · View at Scopus
  20. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” Journal of Applied Physics, vol. 88, no. 7, pp. 4449–4451, 2000. View at Google Scholar · View at Scopus
  21. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Soviet Physics Uspeckhi-USSR, vol. 10, no. 4, p. 509, 1968. View at Google Scholar
  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Google Scholar · View at Scopus
  23. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Cai and V. Shalaev, Optical Metamaterials: fundamentals and Applications, Springer, 2009.
  25. R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Y. S. Kivshar, “Metamaterials and metaoptics,” NPG Asia Materials, vol. 3, pp. 100–108, 2011. View at Google Scholar
  26. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, p. 1686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials, vol. 2, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Applied Physics Letters, vol. 95, no. 25, Article ID 251107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. http://www.pofeska.com/pofeskae/.
  34. http://www.optimedia.co.kr/eng_optimedia_main_a_01.htm.
  35. http://www.luceat.it/inglese/cavi.htm.
  36. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, no. 13, pp. 961–963, 1997. View at Google Scholar · View at Scopus
  37. Y. Gao, N. Guo, B. Gauvreau et al., “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” Journal of Materials Research, vol. 21, no. 9, pp. 2246–2254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Van Eijkelenborg, A. Argyros, and S. G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fiber,” Optics Letters, vol. 33, no. 21, pp. 2446–2448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Irie and M. Nishiguchi, “Development of the resistant plastic optical fiber,” in Proceedings of the International Conference on Plastic Optical Fibers, p. 88, 1994.
  40. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Optical Fiber Technology, vol. 7, no. 2, pp. 101–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Optics Express, vol. 20, no. 1, pp. 141–148, 2012. View at Google Scholar
  42. http://www.zeonex.com/.
  43. G. Emiliyanov, J. B. Jensen, O. Bang et al., “Localized biosensing with Topas microstructured polymer optical fiber,” Optics Letters, vol. 32, no. 5, pp. 460–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. http://www.topas.com/products-topas_coc.
  45. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Japanese Journal of Applied Physics, Part 2, vol. 43, no. 2 B, pp. L317–L319, 2004. View at Google Scholar · View at Scopus
  46. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Applied Physics Letters, vol. 80, no. 15, pp. 2634–2636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” Journal of the Optical Society of America B, vol. 28, no. 5, pp. 1013–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Optics Express, vol. 17, no. 10, pp. 8592–8601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Materials, vol. 1, pp. 22–28, 2009. View at Google Scholar
  50. S. Kondo, T. Ishigure, and Y. Koike, “Fabrication of polymer photonic crystal fiber,” in Proceedings of the Micro-Optics Conference (MOC '11), vol. 10, p. B-7, 2004.
  51. http://www.agcce.com/CYTOP/TechInfo.asp.
  52. G. De Los Reyes, A. Quema, C. Ponseca Jr. et al., “Low-loss single-mode terahertz waveguiding using Cytop,” Applied Physics Letters, vol. 89, no. 21, Article ID 211119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Kondo, T. Ishigure, and Y. Koike, “Low-loss and high-bandwidth deuterated PMMA based graded-index polymer optical fiber,” in Proceedings of the International Conference on Plastic Optical Fibers, pp. 285–292, 2004.
  54. E. H. Min, K. H. Wong, E. Setijadi, F. Ladouceur, M. Straton, and A. Argyros, “Menthol-based chiral copolymers for polymer optical fibers (POF),” Polymer Chemistry, vol. 2, no. 9, pp. 2045–2051, 2011. View at Google Scholar
  55. L. Poladian, M. Straton, A. Docherty, and A. Argyros, “Pure chiral optical fibres,” Optics Express, vol. 19, no. 2, pp. 968–980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Dupuis, N. Guo, Y. Gao et al., “Prospective for biodegradable microstructured optical fibers,” Optics Letters, vol. 32, no. 2, pp. 109–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. J. Large, S. Ponrathnam, A. Argyros, N. S. Pujari, and F. Cox, “Solution doping of microstructured polymer optical fibres,” Optics Express, vol. 12, no. 9, pp. 1966–1971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Li, X. Yang, L. Wang, and W. Zhao, “Dye-doped microstructured polymer optical fibre laser with high numerical aperture air-clad,” in Proceedings of the Conference on Lasers and Electro-Optics, CML4, 2007.
  59. Y. Zhang, K. Li, L. Wang et al., “Casting preforms for microstructured polymer optical fibre fabrication,” Optics Express, vol. 14, no. 12, pp. 5541–5547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. H. C. Y. Yu, A. Argyros, G. Barton et al., “Quantum dot and silica nanoparticle doped polymer optical fibers,” Optics Express, vol. 15, no. 16, pp. 9989–9994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. H. C. Y. Yu, M. A. Van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Applied Optics, vol. 47, no. 35, pp. 6497–6501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. H. C. Y. Yu, A. Argyros, S. G. Leon-Saval, A. Fuerbach, A. Efimov, and G. W. Barton, “Emission properties of quantum dots in polymer optical fibres,” Optics Express, vol. 17, no. 24, pp. 21344–21349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. H. C. Y. Yu, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Temperature effects on emission of quantum dots embedded in polymethylmethacrylate,” Applied Optics, vol. 49, no. 15, pp. 2749–2752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Barton, M. A. Van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Optical Fiber Technology, vol. 10, no. 4, pp. 325–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Argyros, I. M. Bassett, M. A. Van Eijkelenborg et al., “Ring structures in microstructured polymer optical fibres,” Optics Express, vol. 9, no. 13, pp. 813–820, 2001. View at Google Scholar · View at Scopus
  66. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fibre,” Optics Communications, vol. 273, no. 1, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Optics Express, vol. 15, no. 12, pp. 7713–7719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Optics Express, vol. 16, no. 8, pp. 5642–5648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Argyros, S. G. Leon-Saval, and M. A. van Eijkelenborg, “Twin-hollow-core optical fibres,” Optics Communications, vol. 282, no. 9, pp. 1785–1788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature, vol. 420, no. 6916, pp. 650–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Gauvreau, N. Guo, K. Schicker et al., “Color-changing and color-tunable photonic bandgap fiber textiles,” Optics Express, vol. 16, no. 20, pp. 15677–15693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. A. F. Abouraddy, M. Bayindir, G. Benoit et al., “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Materials, vol. 6, no. 5, pp. 336–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. J. Kaufman, G. Tao, S. Shabahang et al., “Structured spheres generated by an in-fibre fluid instability,” Nature, vol. 487, pp. 463–467, 2012. View at Google Scholar
  74. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. De Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Optics Express, vol. 18, no. 25, pp. 25556–25566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Tuniz, B. T. Kuhlmey, R. Lwin et al., “Drawn metamaterials with plasmonic response at terahertz frequencies,” Applied Physics Letters, vol. 96, no. 19, Article ID 191101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Tuniz, R. Lwin, A. Argyros et al., “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Optics Express, vol. 19, no. 17, pp. 16480–16490, 2011. View at Google Scholar
  77. N. Singh, A. Tuniz, R. Lwin et al., “Fiber-draw double split ring resonators in the terahertz range,” Optical Materials Express, vol. 2, no. 9, pp. 1254–1259, 2012. View at Google Scholar
  78. G. F. Taylor, “A method of drawing metallic filaments and a discussion of their properties and uses,” Physical Review, vol. 23, no. 5, pp. 655–660, 1924. View at Publisher · View at Google Scholar · View at Scopus
  79. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers—part I: problem formulation and numerical modeling of transient draw process,” Journal of Lightwave Technology, vol. 23, no. 7, pp. 2245–2254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers—part II: numerical modeling of steady-state draw process,” Journal of Lightwave Technology, vol. 23, no. 7, pp. 2255–2266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” Journal of Lightwave Technology, vol. 24, no. 2, pp. 853–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” International Journal of Heat and Mass Transfer, vol. 50, no. 7-8, pp. 1569–1576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. C. Xue, R. Lwin, G. W. Barton, L. Poladian, and M. C. J. Large, “Transient heating of PMMA preforms for microstructured optical fibers,” Journal of Lightwave Technology, vol. 25, no. 5, pp. 1177–1183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000. View at Google Scholar · View at Scopus
  85. F. Röser, J. Rothhard, B. Ortac et al., “131 W 220 fs fiber laser system,” Optics Letters, vol. 30, no. 20, pp. 2754–2756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Limpert, O. Schmidt, J. Rothhardt et al., “Extended single-mode photonic crystal fiber lasers,” Optics Express, vol. 14, no. 7, pp. 2715–2720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Tünnermann, T. Schreiber, F. Röser et al., “The renaissance and bright future of fibre lasers,” Journal of Physics B, vol. 38, no. 9, pp. S681–S693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Argyros, M. A. Van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Microstructured polymer fiber laser,” Optics Letters, vol. 29, no. 16, pp. 1882–1884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Argyros, M. A. van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Reply to comment on: a microstructured polymer fiber laser,” Optics Letters, vol. 30, no. 14, pp. 1829–1830, 2005. View at Google Scholar
  90. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. Van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- And single-mode microstructured polymer optical fibers,” Optics Letters, vol. 30, no. 24, pp. 3296–3298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. M. P. Hiscocks, M. A. Van Eijkelenborg, A. Argyros, and M. C. J. Large, “Stable imprinting of long-period gratings in microstructured polymer optical fibre,” Optics Express, vol. 14, no. 11, pp. 4644–4649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Measurement Science and Technology, vol. 20, no. 3, Article ID 034014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. J. Large, D. Blacket, and C. A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sensors Journal, vol. 10, no. 7, pp. 1213–1217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Steffen, M. Schukar, J. Witt, K. Krebber, M. Large, and A. Argyros, “Investigation of mPOF LPGs for sensing applications,” in Proceedings of the International Conference on Plastic Optical Fibres, paper 25, p. 26, 2009.
  95. G. Durana, J. Gomez, G. Aldabaldetreku, J. Zubia, A. Montero, and I. Saez de Ocariz, “Assessment of an LPG mPOF for strain sensing,” IEEE Sensors Journal, vol. 12, no. 8, pp. 2668–2673, 2012. View at Google Scholar
  96. A. Argyros, S. G. Leon-Saval, R. Lwin et al., “Polymer optical fibres: conventional and microstructured fibres,” in Fiber Lasers IX: Technology, Systems, and Applications, vol. 8237 of Proceedings of SPIE, 2012. View at Publisher · View at Google Scholar
  97. J. Witt, M. Breithaupt, J. Erdmann, and K. Krebber, “Humidity sensing based on microstructured POF long period gratings,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 409–414, 2011.
  98. D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sensors Journal, vol. 10, no. 7, pp. 1169–1173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Optics Communications, vol. 236, no. 1–3, pp. 75–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. M. M. Werneck, R. C. Allil, D. M. C. Rodrigues et al., “LPG and taper based fiber-optic sensor for index of refraction measurements in biosensor applications,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 545–550, 2011.
  101. J. Witt, M. Schukar, K. Krebber, J. Demuth, and L. Sasek, “Heart rate sensor for integration into personal protective equipment,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 573–577, 2011.
  102. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Optics Express, vol. 15, no. 14, pp. 8844–8850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fibre,” Electronics Letters, vol. 46, no. 17, pp. 1217–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fibre,” in 21st International Conference on Optical Fiber Sensors, vol. 7753 of Proceedings of SPIE, 77536T, 2011. View at Publisher · View at Google Scholar
  105. D. Barrera, I. P. Johnson, D. J. Webb, B. Van Hoe, G. Van Steenberge, and S. Sales, “Dynamic strain sensor using a VCSEL and a polymer fiber Bragg grating in a multimode fiber,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 563–567, 2011.
  106. I. P. Johnson, D. J. Webb, K. Kalli et al., “Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” in Optical Sensors and Photonic Crystal Fibers V, vol. 8073 of Proceedings of SPIE, 80732V-1, 2011.
  107. W. Yuan, L. Khan, D. J. Webb et al., “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Optics Express, vol. 19, no. 20, pp. 19731–19739, 2011. View at Google Scholar
  108. I. P. Johnson, W. Yuan, A. Stefani et al., “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electronics Letters, vol. 47, no. 4, pp. 271–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technology Letters, vol. 23, no. 10, pp. 660–662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electronics Letters, vol. 46, no. 9, pp. 643–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Othonos and K. Kalli, Fiber Bragg Gratings, Artech House, Norwood, UK, 1999.
  112. M. A. Van Eijkelenborg, A. Argyros, A. Bachmann et al., “Bandwidth and loss measurements of graded-index microstructured polymer optical fibre,” Electronics Letters, vol. 40, no. 10, pp. 592–593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Kruglov, S. Loquai, C. A. Bunge, O. Ziemann, B. Schmauss, and J. Vinogradov, “10 Gbit/s short-reach transmission over 35 m large-core graded-index polymer optical fiber,” in Proceedings of the Optical Fiber Communication Conference (OFC '11), OThZ6, March 2011. View at Scopus
  114. J. Vinogradov, R. Kruglov, S. Loquai, and O. Ziemann, “Multigigabit transmission with blue, green and red laser diodes,” in Proceedings of the International Conference on Plastic Optical Fibres, pp. 467–470, 2011.
  115. R. Lwin, G. Barton, L. Harvey et al., “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Applied Physics Letters, vol. 91, no. 19, Article ID 191119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Optics Express, vol. 16, no. 23, pp. 18590–18598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Li and L. Wang, “Fluorescence hydrogen peroxide probe based on a microstructured polymer optical fiber modified with a titanium dioxide film,” Applied Spectroscopy, vol. 64, no. 5, pp. 514–519, 2010. View at Google Scholar · View at Scopus
  118. D. Li and L. Wang, “Cellulose acetate polymer film modified microstructured polymer optical fiber towards a nitrite optical probe,” Optics Communications, vol. 283, no. 14, pp. 2841–2844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056–13066, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Optics Express, vol. 15, no. 19, pp. 11843–11848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Optics Letters, vol. 34, no. 24, pp. 3890–3892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. X. Yang and L. Wang, “Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing,” Optics Communications, vol. 280, no. 2, pp. 368–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Optics Express, vol. 14, no. 9, pp. 4135–4140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Optics Express, vol. 15, no. 21, pp. 13675–13681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Optics Express, vol. 20, no. 10, pp. 11232–11240, 2012. View at Google Scholar
  126. P. J. Roberts, F. Couny, H. Sabert et al., “Ultimate low loss of hollow-core photonic crystal fibres,” Optics Express, vol. 13, no. 1, pp. 236–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Optics Express, vol. 15, no. 2, pp. 325–338, 2007. View at Google Scholar · View at Scopus
  128. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science, vol. 298, no. 5592, pp. 399–402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Optics Letters, vol. 31, no. 24, pp. 3574–3576, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, vol. 318, no. 5853, pp. 1118–1121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Optics Express, vol. 16, no. 25, pp. 20626–20636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. S. J. Russell, “Modelling of a novel hollow-core photonic crystal fibre,” in Proceedings of the Quantum electronics and Laser Science (QELS '03), p. 2, June 2003. View at Scopus
  133. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Optics Express, vol. 15, no. 20, pp. 12680–12685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Optics Letters, vol. 36, no. 5, pp. 669–671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters, vol. 26, no. 11, pp. 846–848, 2001. View at Google Scholar · View at Scopus
  137. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Optics Letters, vol. 24, no. 20, pp. 1431–1433, 1999. View at Google Scholar · View at Scopus
  138. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Optics Express, vol. 12, no. 21, pp. 5263–5268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Applied Physics Letters, vol. 92, no. 7, Article ID 071101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Optics Express, vol. 16, no. 9, pp. 6340–6351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Atakaramians, V. Shahraam Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Optics Express, vol. 16, no. 12, pp. 8845–8854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Optics Communications, vol. 282, no. 1, pp. 36–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Atakaramians, S. V. Afshar, H. Ebendorff-Heidepriem et al., “THz porous fibers: design, fabrication and experimental characterization,” Optics Express, vol. 17, no. 16, pp. 14053–14062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Atakaramians, S. Afshar, M. Nagel et al., “Direct probing of evanescent field for characterization of porous terahertz fibers,” Applied Physics Letters, vol. 98, no. 12, Article ID 121104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. C. S. Ponseca, R. Pobre, E. Estacio et al., “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Optics Letters, vol. 33, no. 9, pp. 902–904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” Journal of the Optical Society of America B, vol. 28, no. 4, pp. 896–907, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” Journal of the Optical Society of America B, vol. 28, no. 4, pp. 917–921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Optics Express, vol. 16, no. 2, pp. 1142–1149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” Journal of Lightwave Technology, vol. 29, no. 1, Article ID 5638593, pp. 93–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Optics Express, vol. 19, no. 19, pp. 18470–18478.
  151. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow—core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Optics Express, vol. 19, no. 2, pp. 1441–1448, 2011. View at Google Scholar · View at Scopus
  152. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Optics Express, vol. 20, no. 10, pp. 11153–11158, 2012. View at Google Scholar
  153. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Optical Fiber Technology, vol. 15, no. 4, pp. 398–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photonics Technology Letters, vol. 22, no. 13, pp. 972–974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Optics Communications, vol. 283, no. 6, pp. 979–984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Optics Express, vol. 18, no. 22, pp. 23133–23146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Optics Express, vol. 20, no. 13, pp. 14350–14361, 2012. View at Google Scholar
  158. L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” Journal of Lightwave Technology, vol. 30, no. 10, pp. 1470–1474, 2012. View at Google Scholar
  159. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773–4776, 1996. View at Google Scholar · View at Scopus
  160. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Physical Review B, vol. 80, no. 24, Article ID 245101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Physical Review B, vol. 77, no. 3, Article ID 033417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983–5990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical Review B, vol. 69, no. 1, Article ID 014402, pp. 144021–144025, 2004. View at Google Scholar · View at Scopus
  164. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Letters, vol. 10, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Physical Review Letters, vol. 102, no. 4, Article ID 043904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: mode equations and guidance conditions,” Journal of the Optical Society of America B, vol. 29, no. 9, pp. 2462–2477, 2012. View at Google Scholar
  167. E. Badinter, A. Ioisher, E. Monaico, V. Postolache, and I. M. Tiginyanu, “Exceptional integration of metal or semimetal nanowires in human-hair-like glass fiber,” Materials Letters, vol. 64, no. 17, pp. 1902–1904, 2010. View at Publisher · View at Google Scholar · View at Scopus