Table of Contents
ISRN Soil Science
Volume 2013 (2013), Article ID 786030, 7 pages
http://dx.doi.org/10.1155/2013/786030
Research Article

Diversity of Rhizobium leguminosarum from Pea Fields in Washington State

1Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA
2Land Management and Water Conservation Research Unit, USDA-ARS and Washington State University, Pullman, WA 99164-6421, USA
3Grain Legume Genetics Physiology Research, USDA-ARS and Washington State University, Pullman, WA 99164-6421, USA

Received 19 December 2012; Accepted 13 January 2013

Academic Editors: G. Benckiser, J. A. Entry, H. K. Pant, and A. P. Schwab

Copyright © 2013 Rita Abi-Ghanem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Principles and Applications of Soil Microbiology, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2005.
  2. D. C. Jordan, “Rhizobiaceae,” in Bergey’s Manual of Systematic Bacteriology, N. R. Krieg, Ed., vol. 1, pp. 234–256, Williams & Wilkins, London, UK, 1984. View at Google Scholar
  3. K. M. Palmer and J. P. W. Young, “Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2445–2450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P. M. Groffman, P. Eagan, W. M. Sullivan, and J. L. Lemunyon, “Grass species and soil type effects on microbial biomass and activity,” Plant and Soil, vol. 183, no. 1, pp. 61–67, 1996. View at Google Scholar · View at Scopus
  5. I. C. Mendes and P. J. Bottomley, “Distribution of a population of Rhizobium leguminosarum bv. trifolii among different size classes of soil aggregates,” Applied and Environmental Microbiology, vol. 64, no. 3, pp. 970–975, 1998. View at Google Scholar · View at Scopus
  6. E. S. Jensen, “The Role of Grain Legume N2 Fixation in the Nitrogen Cycling of Temperate Cropping Systems,” RISO National Laboratory, Roskilde, Denamrk, 1997.
  7. M. J. Unkovich, J. S. Pate, and P. Sanford, “Nitrogen fixation by annual legumes in Australian Mediterranean agriculture,” Australian Journal of Agriculture Research, vol. 48, no. 3, pp. 267–293, 1997. View at Google Scholar · View at Scopus
  8. L. Skot, “Cultivar and rhizobium strain effects on the symbiotic performance of pea (Pisum sativum),” Plant Physiology, vol. 59, pp. 585–589, 1983. View at Google Scholar
  9. M. A. Sattar, M. A. Quader, and S. K. A. Danso, “Nodulation, N2 fixation and yield of chickpea as influenced by host cultivar and Bradyrhizobium strain differences,” Soil Biology and Biochemistry, vol. 27, no. 4-5, pp. 725–727, 1995. View at Google Scholar · View at Scopus
  10. R. Abi-Ghanem, L. Carpenter-Boggs, and J. L. Smith, “Cultivar effects on nitrogen fixation in peas and lentils,” Biology and Fertility of Soils, vol. 47, no. 1, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Moawad, S. M. S. Badr El-Din, and R. A. Abdel-Aziz, “Improvement of biological nitrogen fixation in Egyptian winter legumes through better management of Rhizobium,” Plant and Soil, vol. 204, no. 1, pp. 95–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. N. H. Shah, F. Y. Hafeez, M. Arshad, and K. A. Malik, “Response of lentil to Rhizobium leguminosarum bv. viciae strains at different levels of nitrogen and phosphorus,” Australian Journal of Experimental Agriculture, vol. 40, no. 1, pp. 93–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Laguerre, P. Van Berkum, N. Amarger, and D. Prévost, “Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis,” Applied and Environmental Microbiology, vol. 63, no. 12, pp. 4748–4758, 1997. View at Google Scholar · View at Scopus
  14. Z. Y. Tan, X. D. Xu, E. N. T. Wang, J. L. Gao, E. Martinez-Romero, and W. X. Chen, “Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia,” International Journal of Systematic Bacteriology, vol. 47, no. 3, pp. 874–879, 1997. View at Google Scholar · View at Scopus
  15. W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991. View at Google Scholar · View at Scopus
  16. A. J. Drummond, B. Ashton, M. Cheung et al., Geneious v 5.0, 2010.
  17. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 29, pp. 457–472, 2011. View at Google Scholar
  18. G. Li and C. F. Quiros, “Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica,” Theoretical and Applied Genetics, vol. 103, no. 2-3, pp. 455–461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Peakall and P. E. Smouse, “GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research,” Molecular Ecology Notes, vol. 6, no. 1, pp. 288–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Nei and W. H. Li, “Mathematical model for studying genetic variation in terms of restriction endonucleases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 10, pp. 5269–5273, 1979. View at Google Scholar · View at Scopus
  21. D. L. Swofford, “PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods),” Version 4. Sinauer Associates, Sunderland, Mass, USA, 2003.
  22. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985. View at Google Scholar
  23. T. R. McDermott and M. L. Kahn, “Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene,” Journal of Bacteriology, vol. 174, no. 14, pp. 4790–4797, 1992. View at Google Scholar · View at Scopus
  24. SAS Institute, “SAS Version 9.2 program and procedures guide,” SAS Institute, Cary, NC, USA, 2008.
  25. J. P. W. Young, L. Demetriou, and R. G. Apte, “Rhizobium population genetics: enzyme polymorphism in Rhizobium leguminosarum from plants and soil in a pea crop,” Applied and Environmental Microbiology, vol. 53, no. 2, pp. 397–402, 1987. View at Google Scholar · View at Scopus
  26. E. S. P. Bromfield, S. B. Indu, and M. S. Wolynetz, “Influence of location, host cultivar and inoculation on the composition of naturalized populations of Rhizobium meliloti on Medicago sativa nodules,” Applied and Environmental Microbiology, vol. 51, pp. 1077–1084, 1986. View at Google Scholar
  27. N. P. Thurman and E. S. P. Bromfield, “Effect of variation within and between Medicago and Melilotus species on the composition and dynamics of indigenous populations of Rhizobium meliloti,” Soil Biology and Biochemistry, vol. 20, no. 1, pp. 31–38, 1988. View at Google Scholar · View at Scopus
  28. K. D. Noel and W. J. Brill, “Diversity and dynamics of indigenous Rhizobium japonicum populations,” Applied and Environmental Microbiology, vol. 40, pp. 931–938, 1980. View at Google Scholar
  29. A. B. Bello, W. A. Ceron-Dias, C. D. Nickell, E. O. Elsheriff, and L. C. Davis, “Influence of cultivar between-row spacing and plantpopulation of fixation of soybeans,” Crop Science, vol. 20, pp. 751–775, 1980. View at Google Scholar
  30. F. Y. Hafeez, N. H. Shah, and K. A. Malik, “Field evaluation of lentil cultivars inoculated with Rhizobium leguminosarum bv. viciae strains for nitrogen fixation using nitrogen-15 isotope dilution,” Biology and Fertility of Soils, vol. 31, no. 1, pp. 65–69, 2000. View at Google Scholar · View at Scopus
  31. S. P. Harrison, D. G. Y. Jones, and J. P. W. Pung, “Rhizobium population genetics: genetic variation within and between populations from diverse locations,” Journal of General Microbiology, vol. 135, pp. 1061–1069, 1989. View at Google Scholar