Table of Contents
ISRN Pharmaceutics
Volume 2013 (2013), Article ID 818364, 8 pages
http://dx.doi.org/10.1155/2013/818364
Research Article

In Silico Prediction of Interactions between Site II on Human Serum Albumin and Profen Drugs

Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan

Received 21 January 2013; Accepted 6 February 2013

Academic Editors: R. A. Caceres, A. Ghosal, and H. Sah

Copyright © 2013 Hideto Isogai and Noriaki Hirayama. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Curry, “Lessons from the crystallographic analysis of small molecule binding to human serum albumin,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 4, pp. 342–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Sudlow, D. J. Birkett, and D. N. Wade, “The characterization of two specific drug binding sites on human serum albumin,” Molecular Pharmacology, vol. 11, no. 6, pp. 824–832, 1975. View at Google Scholar · View at Scopus
  3. J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya, M. Otagiri, and S. Curry, “Structural basis of the drug-binding specificity of human serum albumin,” Journal of Molecular Biology, vol. 353, no. 1, pp. 38–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Curtis and H. M. Krumholz, “The case for an adverse interaction between aspirin and non-steroidal anti-inflammatory drugs: is it time to believe the hype?” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 991–993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Honoré and R. Brodersen, “Albumin binding of anti-inflammatory drugs. Utility of site-oriented versus a stoichiometric analysis,” Molecular Pharmacology, vol. 25, no. 1, pp. 137–150, 1984. View at Google Scholar · View at Scopus
  6. H. Watanabe, S. Tanase, K. Nakajou, T. Maruyama, U. Kragh-Hansen, and M. Otagiri, “Role of Arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity,” Biochemical Journal, vol. 349, no. 3, pp. 813–819, 2000. View at Google Scholar · View at Scopus
  7. I. Sjöholm, B. Ekman, A. Kober, I. Ljungstedt-Påhlman, B. Seiving, and T. Sjödin, “Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles,” Molecular Pharmacology, vol. 16, no. 3, pp. 767–777, 1979. View at Google Scholar · View at Scopus
  8. T. Nomura, K. Sakamoto, T. Imai, and M. Otagiri, “Study of interaction of pranoprofen with human serum albumin: binding properties of enantiomers and metabolite,” Journal of Pharmacobio-Dynamics, vol. 15, no. 10, pp. 589–596, 1992. View at Google Scholar · View at Scopus
  9. T. Maruyama, C. C. Lin, K. Yamasaki et al., “Binding of suprofen to human serum albumin. Role of the suprofen carboxyl group,” Biochemical Pharmacology, vol. 45, no. 5, pp. 1017–1026, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Goto, R. Kataoka, H. Muta, and N. Hirayama, “ASEDock-docking based on alpha spheres and excluded volumes,” Journal of Chemical Information and Modeling, vol. 48, no. 3, pp. 583–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. I. D. Kuntz, K. Chen, K. A. Sharp, and P. A. Kollman, “The maximal affinity of ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 9997–10002, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. N. M. Green, “Avidin,” Advances in Protein Chemistry, vol. 29, no. 1, pp. 85–133, 1975. View at Google Scholar
  13. T. Lazaridis, A. Masunov, and F. Gandolfo, “Contributions to the binding free energy of ligands to avidin and streptavidin,” Proteins, vol. 47, no. 2, pp. 194–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. MOE (Molecular Operating Environment), Chemical Computing Group, Montreal, Quebec, Canada, 2011.
  15. F. C. Bernstein, T. F. Koetzle, G. J. Williams et al., “The protein data bank: a computer based archival file for macromolecular structures,” Journal of Molecular Biology, vol. 112, no. 3, pp. 535–542, 1977. View at Google Scholar · View at Scopus
  16. P. J. Hajduk, R. Mendoza, A. M. Petros et al., “Ligand binding to domain-3 of human serum albumin: a chemometric analysis,” Journal of Computer-Aided Molecular Design, vol. 17, no. 2–4, pp. 93–102, 2003. View at Google Scholar
  17. F. Zsila, Z. Bikadi, D. Malik et al., “Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking,” Bioinformatics, vol. 27, no. 13, Article ID btr284, pp. 1806–1813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. A. Kratochwil, W. Huber, F. Müller, M. Kansy, and P. R. Gerber, “Predicting plasma protein binding of drugs: a new approach,” Biochemical Pharmacology, vol. 64, no. 9, pp. 1355–1374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Takamura, S. Shinozawa, T. Maruyama, A. Suenaga, and M. Otagiri, “Effects of fatty acids on serum binding between furosemide and valproic acid,” Biological and Pharmaceutical Bulletin, vol. 21, no. 2, pp. 174–176, 1998. View at Google Scholar · View at Scopus