Table of Contents
ISRN Toxicology
Volume 2013 (2013), Article ID 825427, 13 pages
http://dx.doi.org/10.1155/2013/825427
Research Article

Safety Evaluation of Engineered Nanomaterials for Health Risk Assessment: An Experimental Tiered Testing Approach Using Pristine and Functionalized Carbon Nanotubes

Laboratory of Clinical Toxicology, IRCCS Maugeri Foundation, Medical Institute of Pavia, and University of Pavia, Via Maugeri, 1027100 Pavia, Italy

Received 8 February 2013; Accepted 20 March 2013

Academic Editors: A. Botta, G. C. Jagetia, M. Pacheco, and G. T. Ramesh

Copyright © 2013 Teresa Coccini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova, “Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material,” Journal of Toxicology and Environmental Health Part A, vol. 67, no. 1, pp. 87–107, 2004. View at Google Scholar · View at Scopus
  2. K. Savolainen, H. Alenius, H. Norppa, L. Pylkkänen, T. Tuomi, and G. Kasper, “Risk assessment of engineered nanomaterials and nanotechnologies—a review,” Toxicology, vol. 269, no. 2-3, pp. 92–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. ECHA (European Chemicals Agency), “REACH Guidance on Information Requirements and Chemicals Safety Assessment,” European Chemicals Agency, 2008, http://guidance.echa.europa.eu/guidance_en.htm.
  4. SCENIHR, “Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risk of nanomaterials,” Scientific Committee on Emerging and Newly Identified Health Risks, Opinion adopted, June 2007, http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_004c.pdf.
  5. SCENIHR, “Risk Assessment of Products of Nanotechnologies,” Scientific Committee on Emerging and Newly Identified Health Risks, Opinion adopted, January 2009, http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf.
  6. K. Aschberger, H. J. Johnston, V. Stone et al., “Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature,” Critical Reviews in Toxicology, vol. 40, no. 9, pp. 759–790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. NIOSH, “Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers,” National Institute for Occupational Safety and Health, 2010, http://www.cdc.gov/niosh/docket/review/docket161A/.
  8. G. Oberdörster, “Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology,” Journal of Internal Medicine, vol. 267, no. 1, pp. 89–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. EPA, “Draft nanomaterial research strategy (NRS),” EPA/600/S-08/002, January 2008.
  10. NCI, National Cancer Institute, http://ncl.cancer.gov/working_assay-cascade.asp.
  11. D. B. Warheit, P. J. A. Borm, C. Hennes, and J. Lademann, “Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop,” Inhalation Toxicology, vol. 19, no. 8, pp. 631–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. REACH, “Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC”.
  13. S. Creton, I. C. Dewhurst, L. K. Earl et al., “Acute toxicity testing of chemicals—opportunities to avoid redundant testing and use alternative approaches,” Critical Reviews in Toxicology, vol. 40, no. 1, pp. 50–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Shvedova, V. Castranova, E. R. Kisin et al., “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” Journal of Toxicology and Environmental Health Part A, vol. 66, no. 20, pp. 1909–1926, 2003. View at Google Scholar · View at Scopus
  15. S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, “The biocompatibility of carbon nanotubes,” Carbon, vol. 44, no. 6, pp. 1034–1047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Han, E. J. Lee, J. H. Lee et al., “Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility,” Inhalation Toxicology, vol. 20, no. 8, pp. 741–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Bello, A. J. Hart, K. Ahn et al., “Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films,” Carbon, vol. 46, no. 6, pp. 974–977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Bello, B. L. Wardle, N. Yamamoto et al., “Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes,” Journal of Nanoparticle Research, vol. 11, no. 1, pp. 231–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pacurari, V. Castranova, and V. Vallyathan, “Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans?” Journal of Toxicology and Environmental Health Part A, vol. 73, no. 5-6, pp. 378–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Johnston, G. R. Hutchison, F. M. Christensen et al., “A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics,” Nanotoxicology, vol. 4, no. 2, pp. 207–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Hu, S. Cook, P. Wang, H. M. Hwang, X. Liu, and Q. L. Williams, “In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines,” Science of the Total Environment, vol. 408, no. 8, pp. 1812–1817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Fenoglio, E. Aldieri, E. Gazzano et al., “Thickness of multiwalled carbon nanotubes affects their lung toxicity,” Chemical Research in Toxicology, vol. 25, no. 1, pp. 74–82, 2012. View at Publisher · View at Google Scholar
  23. B. Coto, I. Antia, M. Blanco et al., “Molecular dynamics study of the influence of functionalization on the elastic properties of single and multiwall carbon Nanotubes,” Computational Materials Science, vol. 50, no. 12, pp. 3417–3424, 2011. View at Publisher · View at Google Scholar
  24. C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Shvedova, E. R. Kisin, R. Mercer et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” American Journal of Physiology, vol. 289, no. 5, pp. L698–L708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Cui, F. Tian, C. S. Ozkan, M. Wang, and H. Gao, “Effect of single wall carbon nanotubes on human HEK293 cells,” Toxicology Letters, vol. 155, no. 1, pp. 73–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Jia, H. Wang, L. Yan et al., “Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene,” Environmental Science and Technology, vol. 39, no. 5, pp. 1378–1383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Wörle-Knirsch, K. Pulskamp, and H. F. Krug, “Oops they did it again! Carbon nanotubes hoax scientists in viability assays,” Nano Letters, vol. 6, no. 6, pp. 1261–1268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Pulskamp, S. Diabaté, and H. F. Krug, “Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants,” Toxicology Letters, vol. 168, no. 1, pp. 58–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. W. Porter, A. F. Hubbs, R. R. Mercer et al., “Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes,” Toxicology, vol. 269, no. 2-3, pp. 136–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Donaldson, R. Aitken, L. Tran et al., “Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety,” Toxicological Sciences, vol. 92, no. 1, pp. 5–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Herzog, A. Casey, F. M. Lyng, G. Chambers, H. J. Byrne, and M. Davoren, “A new approach to the toxicity testing of carbon-based nanomaterials-The clonogenic assay,” Toxicology Letters, vol. 174, no. 1–3, pp. 49–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Shvedova, E. R. Kisin, D. Porter et al., “Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus?” Pharmacology and Therapeutics, vol. 121, no. 2, pp. 192–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. P. Simeonova, “Update on carbon nanotube toxicity,” Nanomedicine, vol. 4, no. 4, pp. 373–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wang, G. Jia, H. Wang et al., “Diameter effects on cytotoxicity of multi-walled carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 5, pp. 3025–3033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Wick P, Manser, L. K. Limbach et al., “The degree and kind of agglomeration affect carbon nanotube cytotoxicity,” Toxicology Letters, vol. 168, no. 2, pp. 121–131, 2007. View at Publisher · View at Google Scholar
  38. Y.-G. Han, J. Xu, Z.-G. Li, G.-G. Ren, and Z. Yang, “In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells,” Neurotoxicology, vol. 33, no. 5, pp. 1128–1134, 2012. View at Publisher · View at Google Scholar
  39. C. M. Sayes, F. Liang, J. L. Hudson et al., “Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro,” Toxicology Letters, vol. 161, no. 2, pp. 135–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. W. Zhang, L. Zeng, A. R. Barron, and N. A. Monteiro-Riviere, “Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes,” International Journal of Toxicology, vol. 26, no. 2, pp. 103–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Tong, J. K. McGee, R. K. Saxena, U. P. Kodavanti, R. B. Devlin, and M. I. Gilmour, “Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice,” Toxicology and Applied Pharmacology, vol. 239, no. 3, pp. 224–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. McDonald and L. Mitchell, “To the editor,” Toxicological Sciences, vol. 101, no. 1, pp. 181–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. K. E. Driscoll, D. L. Costa, G. Hatch et al., “Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations,” Toxicological Sciences, vol. 55, no. 1, pp. 24–35, 2000. View at Google Scholar · View at Scopus
  44. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Muller, F. Huaux, N. Moreau et al., “Respiratory toxicity of multi-wall carbon nanotubes,” Toxicology and Applied Pharmacology, vol. 207, no. 3, pp. 221–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. G. Li, W. X. Li, J. Y. Xu et al., “Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation,” Environmental Toxicology, vol. 22, no. 4, pp. 415–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Elgrabli, S. Abella-Gallart, F. Robidel, F. Rogerieux, J. Boczkowski, and G. Lacroix, “Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes,” Toxicology, vol. 253, no. 1–3, pp. 131–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Fagnoni, A. Profumo, D. Merli, D. Dondi, P. Mustarelli, and E. Quartarone, “Water-miscible liquid multiwalled carbon nanotubes,” Advanced Materials, vol. 21, no. 17, pp. 1761–1765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon, vol. 45, no. 7, pp. 1425–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Lin, Y. W. Huang, X. D. Zhou, and Y. Ma, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, vol. 217, no. 3, pp. 252–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, pp. 1070–1078, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Casey, M. Davoren, E. Herzog, F. M. Lyng, H. J. Byrne, and G. Chambers, “Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing,” Carbon, vol. 45, no. 1, pp. 34–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. N. A. Monteiro-Riviere, A. O. Inman, and L. W. Zhang, “Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line,” Toxicology and Applied Pharmacology, vol. 234, no. 2, pp. 222–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Simon-Deckers, B. Gouget, M. Mayne-L'Hermite, N. Herlin-Boime, C. Reynaud, and M. Carrière, “In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes,” Toxicology, vol. 253, no. 1–3, pp. 137–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. B. Mangum, E. A. Turpin, A. Antao-Menezes, M. F. Cesta, E. Bermudez, and J. C. Bonner, “Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages In Situ,” Particle and Fibre Toxicology, vol. 3, article 15, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Donaldson, P. J. A. Borm, V. Castranova, and M. Gulumian, “The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles,” Particle and Fibre Toxicology, vol. 6, article 13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. V. D. Z. Park, D. P. K. Lankveld, H. van Loveren, and W. H. de Jong, “The status of in vitro toxicity studies in the risk assessment of nanomaterials,” Nanomedicine, vol. 4, no. 6, pp. 669–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Stone, H. Johnston, and R. P. F. Schins, “Development of in vitro systems for nanotoxicology: methodological considerations,” Critical Reviews in Toxicology, vol. 39, no. 7, pp. 613–626, 2009. View at Publisher · View at Google Scholar · View at Scopus