Table of Contents
ISRN Applied Mathematics
Volume 2013, Article ID 856404, 9 pages
http://dx.doi.org/10.1155/2013/856404
Research Article

Adaptive Estimation of Biological Rhythm in Crassulacean Acid Metabolism with Critical Manifold

1Department of Architecture and Mechatronics, Oita University, 700 Dannoharu, Oita 870-1192, Japan
2Department of Electronics and Control, Kitakyushu National College of Technology 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985, Japan

Received 28 April 2013; Accepted 30 May 2013

Academic Editors: W. Huang, X. Meng, J. Shen, and L. You

Copyright © 2013 Takami Matsuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Lüttge and F. Beck, “Endogenous rhythms and chaos in crassulacean acid metabolism,” Planta, vol. 188, no. 1, pp. 28–38, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Lüttge, “The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism,” Planta, vol. 211, no. 6, pp. 761–769, 2000. View at Google Scholar · View at Scopus
  3. B. Blasius, R. Neff, F. Beck, and U. Lüttge, “Oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch,” Proceedings of the Royal Society B, vol. 266, no. 1414, pp. 93–101, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Blasius, F. Beck, and U. Lüttge, “A model for photosynthetic oscillations in crassulacean acid metabolism (CAM),” Journal of Theoretical Biology, vol. 184, no. 3, pp. 345–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Blasius, F. Beck, and U. Lüttge, “Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch,” Plant, Cell and Environment, vol. 21, no. 8, pp. 775–784, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Neff, B. Blasius, F. Beck, and U. Lüttge, “Thermodynamics and energetics of the tonoplast membrane operating as a hysteresis switch in an oscillatory model of Crassulacean acid metabolism,” Journal of Membrane Biology, vol. 165, no. 1, pp. 37–43, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Inoue, Y. Hasegawa, H. Suemitsu, and T. Matsuo, “Nonlinear estimator and controller for biological clock of crassulacean acid metabolism,” in Proceedings of the 6th Japan-France Congress on Mechatronics and 4th Asia-Europe Congress on Mechatronics, pp. 101–106, 2003.
  8. Y. Hasegawa, T. Inoue, H. Suemitsu, and T. Matsuo, “Adaptive observer-based P-controller for biological clock of crassulacean acid metabolism,” in Proceedings of the IFAC Workshop on Adaptation and Learning in Control and Signal Processing, pp. 591–596, 2004.
  9. T. Matsuo, Y. Totoki, and H. Suemitsu, “Internal states estimation of biological clock in crassulacean acid metabolism by adaptive observer,” Journal of the Society of Instrument and Control Engineers Japan, vol. 49, pp. 451–456, 2010 (Japanese). View at Google Scholar
  10. M. Oka, Y. Totoki, H. Suemitsu, and T. Matsuo, “Adaptive observer for biological clock of crassulacean acid metabolism with partial states,” in Proceedings of the 2nd International Conference on Innovative Computing, Information and Control (ICICIC '07), September 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Totoki, H. Suemitsu, and T. Matsuo, “Nonlinear dynamics estimation of CAM plants using slow manifolds,” in Proceedings of the SICE Annual Conference, pp. 1877–1882, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Totoki, H. Suemitsu, and T. Matsuo, “On robustness against temperature changes of adaptive estimator for CAM plants,” in Proceedings of the 41st ISCIE International Symposium on Stochastic Systems Theory and its Applications, pp. 7–12, 2010. View at MathSciNet
  13. F. Beck, B. Blasius, U. Lüttge, R. Neff, and U. Rascher, “Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour,” Proceedings of the Royal Society B, vol. 268, no. 1473, pp. 1307–1313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Guckenheimer, “Bifurcation and degenerate decomposition in multiple time scale dynamical systems,” in Nonlinear Dynamics and Chaos: Where Do We Go from Here? S. J. Hogan, Ed., pp. 1–20, IOP Publishing, 2003. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. Cai, L. Tian, and J. Huang, “Slow manifolds of Lorenz-Haken system and its application,” International Journal of Nonlinear Science, vol. 1, no. 2, pp. 93–104, 2006. View at Google Scholar · View at MathSciNet
  16. K. h. Khalil, Nonlinear Systems, Prentice Hall, 3rd edition, 2002.
  17. L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807–814, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. L. X. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, Englewood Cliffs, NJ, USA, 1994.