Table of Contents
ISRN Neurology
Volume 2013, Article ID 893605, 16 pages
http://dx.doi.org/10.1155/2013/893605
Research Article

Lesion-Induced Alterations in Astrocyte Glutamate Transporter Expression and Function in the Hippocampus

Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Building 26.02.00, 40225 Duesseldorf, Germany

Received 3 July 2013; Accepted 27 July 2013

Academic Editors: S. C. Barnett and J.-I. Satoh

Copyright © 2013 Alexandra E. Schreiner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Danbolt, “Glutamate uptake,” Progress in Neurobiology, vol. 65, no. 1, pp. 1–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. V. Tzingounis and J. I. Wadiche, “Glutamate transporters: confining runaway excitation by shaping synaptic transmission,” Nature Reviews Neuroscience, vol. 8, no. 12, pp. 935–947, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Bergles, J. S. Diamond, and C. E. Jahr, “Clearance of glutamate inside the synapse and beyond,” Current Opinion in Neurobiology, vol. 9, no. 3, pp. 293–298, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Anderson and R. A. Swanson, “Astrocyte glutamate transport: review of properties, regulation, and physiological functions,” Glia, vol. 32, no. 1, pp. 1–14, 2000. View at Google Scholar
  5. P. Marcaggi and D. Attwell, “Role of glial amino acid transporters in synaptic transmission and brain energetics,” Glia, vol. 47, no. 3, pp. 217–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. N. J. Maragakis and J. D. Rothstein, “Glutamate transporters: animal models to neurologic disease,” Neurobiology of Disease, vol. 15, no. 3, pp. 461–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Gegelashvili and A. Schousboe, “Cellular distribution and kinetic properties of high-affinity glutamate transporters,” Brain Research Bulletin, vol. 45, no. 3, pp. 233–238, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Deitmer and C. R. Rose, “Ion changes and signalling in perisynaptic glia,” Brain Research Reviews, vol. 63, no. 1-2, pp. 113–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kirischuk, V. Parpura, and A. Verkhratsky, “Sodium dynamics: another key to astroglial excitability?” Trends in Neurosciences, vol. 35, no. 8, pp. 497–506, 2012. View at Google Scholar
  10. M. V. Sofroniew, “Molecular dissection of reactive astrogliosis and glial scar formation,” Trends in Neurosciences, vol. 32, no. 12, pp. 638–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. Ridet, S. K. Malhotra, A. Privat, and F. H. Gage, “Reactive astrocytes: cellular and molecular cues to biological function,” Trends in Neurosciences, vol. 20, no. 12, pp. 570–577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Middeldorp and E. M. Hol, “GFAP in health and disease,” Progress in Neurobiology, vol. 93, no. 3, pp. 421–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pekny and M. Nilsson, “Astrocyte activation and reactive gliosis,” Glia, vol. 50, no. 4, pp. 427–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Bordey, S. A. Lyons, J. J. Hablitz, and H. Sontheimer, “Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia,” Journal of Neurophysiology, vol. 85, no. 4, pp. 1719–1731, 2001. View at Google Scholar · View at Scopus
  15. R. Jabs, G. Seifert, and C. Steinhäuser, “Astrocytic function and its alteration in the epileptic brain,” Epilepsia, vol. 49, supplement 2, pp. 3–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Buffo, I. Rite, P. Tripathi et al., “Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3581–3586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Robel, B. Berninger, and M. Götz, “The stem cell potential of glia: lessons from reactive gliosis,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 88–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kawano, J. Kimura-Kuroda, Y. Komuta et al., “Role of the lesion scar in the response to damage and repair of the central nervous system,” Cell and Tissue Research, vol. 349, no. 1, pp. 169–180, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Yiu and Z. He, “Glial inhibition of CNS axon regeneration,” Nature Reviews Neuroscience, vol. 7, no. 8, pp. 617–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Fitch and J. Silver, “CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure,” Experimental Neurology, vol. 209, no. 2, pp. 294–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Li, A. Lundkvist, D. Andersson et al., “Protective role of reactive astrocytes in brain ischemia,” Journal of Cerebral Blood Flow & Metabolism, vol. 28, no. 3, pp. 468–481, 2008. View at Google Scholar
  22. F. K. H. van Landeghem, T. Weiss, M. Oehmichen, and A. Von Deimling, “Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury,” Journal of Neurotrauma, vol. 23, no. 10, pp. 1518–1528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. L. Raghavendra Rao, M. K. Başkaya, A. Doǧan, J. D. Rothstein, and R. J. Dempsey, “Traumatic brain injury down-regulates glial glutamate transporter (GLT- 1 and GLAST) proteins in rat brain,” Journal of Neurochemistry, vol. 70, no. 5, pp. 2020–2027, 1998. View at Google Scholar · View at Scopus
  24. J.-C. Chen, H. Hsu-Chou, J.-L. Lu et al., “Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia,” Neuropharmacology, vol. 49, no. 5, pp. 703–714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. D. Ginsberg, L. J. Martin, and J. D. Rothstein, “Regional deafferentation down-regulates subtypes of glutamate transporter proteins,” Journal of Neurochemistry, vol. 65, no. 6, pp. 2800–2803, 1995. View at Google Scholar · View at Scopus
  26. J. E. Springer, R. D. Azbill, R. J. Mark, J. G. Begley, G. Waeg, and M. P. Mattson, “4-Hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake,” Journal of Neurochemistry, vol. 68, no. 6, pp. 2469–2476, 1997. View at Google Scholar · View at Scopus
  27. M. B. Moretto, N. S. Arteni, D. Lavinsky et al., “Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: Prevention by guanosine,” Experimental Neurology, vol. 195, no. 2, pp. 400–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Stoppini, P.-A. Buchs, and D. Muller, “A simple method for organotypic cultures of nervous tissue,” Journal of Neuroscience Methods, vol. 37, no. 2, pp. 173–182, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat Methods, vol. 1, no. 1, pp. 31–37, 2004. View at Google Scholar · View at Scopus
  30. K. W. Kafitz, S. D. Meier, J. Stephan, and C. R. Rose, “Developmental profile and properties of sulforhodamine 101-Labeled glial cells in acute brain slices of rat hippocampus,” Journal of Neuroscience Methods, vol. 169, no. 1, pp. 84–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Schnell, Y. Hagos, and S. Hulsmann, “Active sulforhodamine 101 uptake into hippocampal astrocytes,” PLoS One, vol. 7, no. 11, Article ID e49398, 2012. View at Google Scholar
  32. S. D. Meier, Y. Kovalchuk, and C. R. Rose, “Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging,” Journal of Neuroscience Methods, vol. 155, no. 2, pp. 251–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Langer and C. R. Rose, “Synaptically induced sodium signals in hippocampal astrocytes in situ,” Journal of Physiology, vol. 587, part 24, pp. 5859–5877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Langer, J. Stephan, M. Theis, and C. R. Rose, “Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ,” Glia, vol. 60, no. 2, pp. 239–252, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. R. Rose and B. R. Ransom, “Intracellular sodium homeostasis in rat hippocampal astrocytes,” Journal of Physiology, vol. 491, part 2, no. 2, pp. 291–305, 1996. View at Google Scholar · View at Scopus
  36. A. M. Benediktsson, G. S. Marrs, J. C. Tu et al., “Neuronal activity regulates glutamate transporter dynamics in developing astrocytes,” Glia, vol. 60, no. 2, pp. 175–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Zhou, G. P. Schools, and H. K. Kimelberg, “Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive,” Journal of Neurophysiology, vol. 95, no. 1, pp. 134–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Suárez, G. Bodega, and B. Fernández, “Modulation of glutamate transporters (GLAST, GLT-1 and EAAC1) in the rat cerebellum following portocaval anastomosis,” Brain Research, vol. 859, no. 2, pp. 293–302, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Zhu, D. E. Bergles, and A. Nishiyama, “NG2 cells generate both oligodendrocytes and gray matter astrocytes,” Development, vol. 135, no. 1, pp. 145–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Brunne, S. Zhao, A. Derouiche et al., “Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus,” Glia, vol. 58, no. 13, pp. 1553–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Wu, A.-Q. Zhang, and D. T. Yew, “Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus,” Neurochemistry International, vol. 46, no. 7, pp. 565–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Magavi, D. Friedmann, G. Banks, A. Stolfi, and C. Lois, “Coincident generation of pyramidal neurons and protoplasmic astrocytes in neocortical columns,” Journal of Neuroscience, vol. 32, no. 14, pp. 4762–4772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Olabarria, H. N. Noristani, A. Verkhratsky, and J. J. Rodríguez, “Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease,” Glia, vol. 58, no. 7, pp. 831–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. M. Benediktsson, S. J. Schachtele, S. H. Green, and M. E. Dailey, “Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures,” Journal of Neuroscience Methods, vol. 141, no. 1, pp. 41–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Lushnikova, G. Skibo, D. Muller, and I. Nikonenko, “Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus,” Hippocampus, vol. 19, no. 8, pp. 753–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Raponi, F. Agenes, C. Delphin et al., “S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage,” Glia, vol. 55, no. 2, pp. 165–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. G. Schipke, C. Boucsein, C. Ohlemeyer, F. Kirchhoff, and H. Kettenmann, “Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices,” The FASEB Journal, vol. 16, no. 2, pp. 255–257, 2002. View at Google Scholar · View at Scopus
  48. J. Zhou and M. L. Sutherland, “Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity,” Journal of Neuroscience, vol. 24, no. 28, pp. 6301–6306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Nakagawa, Y. Otsubo, Y. Yatani, H. Shirakawa, and S. Kaneko, “Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures,” European Journal of Neuroscience, vol. 28, no. 9, pp. 1719–1730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-Y. Chatton, P. Marquet, and P. J. Magistretti, “A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: Implications for cellular bioenergetics,” European Journal of Neuroscience, vol. 12, no. 11, pp. 3843–3853, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Förster, S. Zhao, and M. Frotscher, “Laminating the hippocampus,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 259–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. B. H. Gähwiler, M. Capogna, D. Debanne, R. A. McKinney, and S. M. Thompson, “Organotypic slice cultures: a technique has come of age,” Trends in Neurosciences, vol. 20, no. 10, pp. 471–477, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. P. E. Kunkler and R. P. Kraig, “Reactive astrocytosis from excitotoxic injury in hippocampal organ culture parallels that seen in vivo,” Journal of Cerebral Blood Flow and Metabolism, vol. 17, no. 1, pp. 26–43, 1997. View at Google Scholar · View at Scopus
  54. I. E. Holopainen, “Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity,” Neurochemical Research, vol. 30, no. 12, pp. 1521–1528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Haber, L. Zhou, and K. K. Murai, “Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses,” Journal of Neuroscience, vol. 26, no. 35, pp. 8881–8891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Nishida and S. Okabe, “Direct astrocytic contacts regulate local maturation of dendritic spines,” Journal of Neuroscience, vol. 27, no. 2, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Buffo, C. Rolando, and S. Ceruti, “Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential,” Biochemical Pharmacology, vol. 79, no. 2, pp. 77–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J.-H. Yi and A. S. Hazell, “Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury,” Neurochemistry International, vol. 48, no. 5, pp. 394–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Werner and K. Engelhard, “Pathophysiology of traumatic brain injury,” British Journal of Anaesthesia, vol. 99, no. 1, pp. 4–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Gegelashvili, M. B. Robinson, D. Trotti, and T. Rauen, “Regulation of glutamate transporters in health and disease,” Progress in Brain Research, vol. 132, pp. 267–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Escartin, E. Brouillet, P. Gubellini et al., “Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo,” Journal of Neuroscience, vol. 26, no. 22, pp. 5978–5989, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Vermeiren, M. Najimi, N. Vanhoutte et al., “Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes,” Journal of Neurochemistry, vol. 94, no. 2, pp. 405–416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. C. L. Poitry-Yamate, L. Vutskits, and T. Rauen, “Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function,” Journal of Neurochemistry, vol. 82, no. 4, pp. 987–997, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. P. M. Beart and R. D. O'Shea, “Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement,” British Journal of Pharmacology, vol. 150, no. 1, pp. 5–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. F. D. Lima, M. A. Souza, A. F. Furian et al., “Na+,K+-ATPase activity impairment after experimental traumatic brain injury: relationship to spatial learning deficits and oxidative stress,” Behavioural Brain Research, vol. 193, no. 2, pp. 306–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. G. A. Gusarova, H. E. Trejo, L. A. Dada et al., “Hypoxia leads to Na,K-ATPase downregulation via Ca2+ release-activated Ca2+ channels and AMPK activation,” Molecular and Cellular Biology, vol. 31, no. 17, pp. 3546–3556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. S. S. L. Chew, C. S. Johnson, C. R. Green, and H. V. Danesh-Meyer, “Role of connexin43 in central nervous system injury,” Experimental Neurology, vol. 225, no. 2, pp. 250–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Nilsson, L. Hillered, U. Ponten, and U. Ungerstedt, “Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 10, no. 5, pp. 631–637, 1990. View at Google Scholar · View at Scopus
  69. H. Katoh, K. Sima, H. Nawashiro, K. Wada, and H. Chigasaki, “The effect of MK-801 on extracellular neuroactive amino acids in hippocampus after closed head injury followed by hypoxia in rats,” Brain Research, vol. 758, no. 1-2, pp. 153–162, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Koizumi, H. Fujisawa, H. Ito, T. Maekawa, X. Di, and R. Bullock, “Effects of mild hypothermia on cerebral blood flow-independent changes in cortical extracellular levels of amino acids following contusion trauma in the rat,” Brain Research, vol. 747, no. 2, pp. 304–312, 1997. View at Publisher · View at Google Scholar · View at Scopus