Table of Contents
ISRN Biomathematics
Volume 2013, Article ID 897658, 53 pages
http://dx.doi.org/10.1155/2013/897658
Review Article

Biochemical Systems Theory: A Review

Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, USA

Received 24 September 2012; Accepted 19 October 2012

Academic Editors: R. Pérez-Correa and W. Raffelsberger

Copyright © 2013 Eberhard O. Voit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Savageau, Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology, Addison-Wesley, Reading, Mass, USA, 1976.
  2. E. O. Voit, Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, Van Nostrand Reinhold, New York, NY, USA, 1991.
  3. E. O. Voit, Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, Cambridge, UK, 2000.
  4. N. V. Torres and E. O. Voit, Pathway Analysis and Optimization in Metabolic Engineering, Cambridge University Press, Cambridge, UK, 2002.
  5. G. Goel, Reconstructing Biochemical Systems. Systems Modeling and Analysis Tools for Decoding Biological Designs, VDM Verlag Dr. Müller, Saarbrücken, Germany, 2008.
  6. E. O. Voit, A First Course in Systems Biology, Garland Science, New York, NY, USA, 2012.
  7. E. O. Voit, Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, Cambridge, UK, 2006.
  8. N. V. Torres and E. O. Voit, Pathway Analysis and Optimization in Metabolic Engineering, Cambridge University Press, Cambridge, UK, 2005.
  9. F. Shiraishi, BST: Biochemical Systems Theory, 2007.
  10. M. A. Savageau, “The behavior of intact biochemical control systems,” Current Topics in Cellular Regulation, vol. 6, pp. 63–129, 1972. View at Google Scholar
  11. M. A. Savageau, “Mathematics of organizationally complex systems,” Biomedica Biochimica Acta, vol. 44, no. 6, pp. 839–844, 1985. View at Google Scholar · View at Scopus
  12. M. A. Savageau, “Critique of the enzymologist's test tube,” in Fundamentals of Medical Cell Biology, E. E. Bittar, Ed., vol. 3, pp. 45–108, JAI Press, Greenwich, Conn, USA, 1992. View at Google Scholar
  13. M. A. Savageau, “Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited,” in Principles of Medical Biology, E. E. Bittar, Ed., vol. 4, pp. 93–146, JAI Press, Greenwich, Conn, USA, 1995. View at Google Scholar
  14. M. A. Savageau, “A kinetic formalism for integrative molecular biology: manifestation in biochemical systems theory and use in elucidating design principles for gene circuits,” in Integrative Approaches to Molecular Biology, J. Collado-Vides, B. Magasanik, and T. F. Smith, Eds., pp. 115–146, MIT Press, Cambridge, Mass, USA, 1996. View at Google Scholar
  15. M. A. Savageau and E. O. Voit, “Power-law approach to modeling biological systems—I—theory,” Journal of Fermentation Technology, vol. 60, pp. 221–228, 1982. View at Google Scholar
  16. E. O. Voit and M. A. Savageau, “Power-law approach to modeling biological systems—III—methods of analysis,” Journal of Fermentation Technology, vol. 60, pp. 223–241, 1982. View at Google Scholar
  17. E. O. Voit, “Canonical modeling: review of concepts with emphasis on environmental health,” Environmental Health Perspectives, vol. 108, no. 5, supplement, pp. 895–909, 2000. View at Google Scholar · View at Scopus
  18. E. O. Voit and M. A. Savageau, “S-system analysis of biological systems,” in Mathematics in Biology and Medicine, V. Capasso, E. Grosso, and S. L. Paveri-Fontana, Eds., vol. 57 of Lecture Notes in Biomathematics, pp. 517–524, Heidelberg, Germany, 1985. View at Google Scholar
  19. E. O. Voit, “Models-of-data and models-of-processes in the post-genomic era,” Mathematical Biosciences, vol. 180, pp. 263–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Marin-Sanguino, S. K. Gupta, E. O. Voit, and J. Vera, “Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases,” Methods in Enzymology, vol. 487, pp. 319–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Peschel, W. Mende, M. A. Savageau, and E. O. Voit, “Allgemeine Systemkonzepte für homogene dynamische Netzwerke,” Messen-Steuern-Regeln, vol. 32, pp. 170–172, 1989. View at Google Scholar
  22. K. J. Sims, F. Alvarez-Vasquez, E. O. Voit, and Y. A. Hannun, “A guide to biochemical systems modeling of sphingolipids for the biochemist,” Methods in Enzymology, vol. 432, pp. 319–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Savageau, “Power-law formalism: a canonical nonlinear approach to modeling and analysis,” in Proceedings of the World Congress of Nonlinear Analysts, V. Lakshmikantham, Ed., pp. 3323–3334, Walter de Gruyter Publishers, 1996.
  24. E. O. Volt, “Control in perspective,” Trends in Biochemical Sciences, vol. 12, p. 221, 1987. View at Google Scholar · View at Scopus
  25. E. O. Voit, “Recasting nonlinear models as S-systems,” Mathematical and Computer Modelling, vol. 11, pp. 140–145, 1988. View at Google Scholar · View at Scopus
  26. E. O. Voit, “Modelling metabolic networks using power-laws and S-systems,” Essays in Biochemistry, vol. 45, pp. 29–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. O. Voit, Z. Qi, and G. W. Miller, “Steps of modeling complex biological systems,” Pharmacopsychiatry, vol. 41, no. 1, pp. S78–S84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. O. Voit and M. K. Schubauer-Berigan, “The role of canonical modeling as a unifying framework for ecological and human risk assessment,” in Risk Assessment: Logic and Measurement, M. C. Newman and C. L. Stojan, Eds., pp. 101–139, Ann Arbor Press, Chelsea, Mich, USA, 1998. View at Google Scholar
  29. M. A. Savageau, “Introduction to S-systems and the underlying power-law formalism,” Mathematical and Computer Modelling, vol. 11, pp. 546–551, 1988. View at Google Scholar · View at Scopus
  30. E. O. Voit and J. H. Schwacke, “Understanding through modeling,” in Systems Biology: Principles, Methods, and Concepts, A. K. Konopka, Ed., pp. 27–82, CRC Press/Taylor & Francis Books, Boca Raton, Fla, USA, 2007. View at Google Scholar
  31. E. O. Voit and S. R. Veflingstad, “Systems biology as an inspiration for mechatronics,” Journal of Biomechatronics Engineering, vol. 1, pp. 55–69, 2008. View at Google Scholar
  32. M. A. Savageau, “Biochemical systems theory: operational differences among variant representations and their significance,” Journal of Theoretical Biology, vol. 151, no. 4, pp. 509–530, 1991. View at Google Scholar · View at Scopus
  33. E. O. Voit, “Tutorial on the structure of S-systems. Tutorials of the Iizuka,” in Proceedings of the 4th International Conference on Soft Computing, Lizuka, Fukuoka, Japan, 1996.
  34. M. A. Savageau, “Reconstructionist molecular biology,” New Biologist, vol. 3, no. 2, pp. 190–197, 1991. View at Google Scholar · View at Scopus
  35. M. A. Savageau, “The challenge of reconstruction,” New Biologist, vol. 3, no. 2, pp. 101–102, 1991. View at Google Scholar · View at Scopus
  36. M. A. Savageau, “Design principles for elementary gene circuits: elements, methods, and examples,” Chaos, vol. 11, no. 1, pp. 142–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22912–22918, 1992. View at Google Scholar · View at Scopus
  38. F.-S. Wang and W.-H. Wu, “Biomolecular pathway modeling,” in Systems Biology, pp. 55–84, World Scientific, Singapore, 2012. View at Google Scholar
  39. R. Alves, E. Vilaprinyo, and A. Sorribas, “Integrating bioinformatics and computational biology: perspectives and possibilities forin silico network reconstruction in molecular systems biology,” Current Bioinformatics, vol. 3, pp. 98–129, 2008. View at Google Scholar
  40. S. R. Veflingstad, P. Dam, Y. Xu, and E. O. Voit, “Microbial pathway models,” in Computational Methods for Understanding Bacterial and Archaeal Genomes, Y. Xu and J. P. Gogarten, Eds., vol. 7, Imperial College Press, London, UK, 2008. View at Google Scholar
  41. J. Vera, E. Balsa-Canto, P. Wellstead, J. R. Banga, and O. Wolkenhauer, “Power-law models of signal transduction pathways,” Cellular Signalling, vol. 19, no. 7, pp. 1531–1541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Alves, E. Vilaprinyo, B. Hernández-Bermejo, and A. Sorribas, “Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways,” Biotechnology and Genetic Engineering Reviews, vol. 25, pp. 1–40, 2008. View at Google Scholar · View at Scopus
  43. E. O. Voit, “Metabolic modeling: a tool of drug discovery in the post-genomic era,” Drug Discovery Today, vol. 7, no. 11, pp. 621–628, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. E. O. Voit, Z. Qi, and S. Kikuchi, “Mesoscopic models of neurotransmission as intermediates between disease simulators and tools for discovering design principles,” Pharmacopsychiatry, vol. 45, no. 1, supplement, pp. S22–S30, 2012. View at Google Scholar
  45. G. Goel, I. C. Chou, and E. O. Voit, “Biological systems modeling and analysis: a biomolecular technique of the twenty-first century,” Journal of Biomolecular Techniques, vol. 17, no. 4, pp. 252–269, 2006. View at Google Scholar · View at Scopus
  46. E. O. Voit, “Theory and applications of S-systems,” in Dynamical Networks, W. Ebeling and M. Peschel, Eds., pp. 37–51, Akademie, Berlin, Germany, 1989. View at Google Scholar
  47. E. O. Voit, M. A. Savageau, and D. H. Irvine, “An introduction to S-systems,” in Canonical Nonlinear Modeling. S-system Approach to Understanding Complexity, E. O. Voit, Ed., pp. 47–66, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  48. K. J. Sims, S. D. Spassieva, E. O. Voit, and L. M. Obeid, “Yeast sphingolipid metabolism: clues and connections,” Biochemistry and Cell Biology, vol. 82, no. 1, pp. 45–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. E. O. Voit, “The dawn of a new era of metabolic systems analysis,” Drug Discovery Today, vol. 2, no. 5, pp. 182–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Tominaga and M. Okamoto, “Design of canonical model describing complex nonlinear dynamics,” in Proceedings of the 7th International Conference on Computer Applications in Biotechnology, pp. 85–90, 1998.
  51. E. O. Voit, “Canonical nonlinear simulation of complex systems,” in Proceedings of the European Simulation Multiconference, pp. 34–39, Nürnberg, Germany, 1990.
  52. M. A. Savageau, E. O. Voit, and D. H. Irvine, “Biochemical systems theory and metabolic control theory—1—fundamental similarities and differences,” Mathematical Biosciences, vol. 86, no. 2, pp. 127–145, 1987. View at Google Scholar · View at Scopus
  53. M. A. Savageau, E. O. Voit, and D. H. Irvine, “Biochemical systems theory and metabolic control theory—2—the role of summation and connectivity relationships,” Mathematical Biosciences, vol. 86, no. 2, pp. 147–169, 1987. View at Google Scholar · View at Scopus
  54. A. Sorribas and M. A. Savageau, “Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways,” Mathematical Biosciences, vol. 94, no. 2, pp. 239–269, 1989. View at Google Scholar · View at Scopus
  55. A. Sorribas and M. A. Savageau, “A comparison of variant theories of intact biochemical systems. II. flux-oriented and metabolic control theories,” Mathematical Biosciences, vol. 94, no. 2, pp. 195–238, 1989. View at Google Scholar · View at Scopus
  56. A. Sorribas and M. A. Savageau, “A comparison of variant theories of intact biochemical systems. I. enzyme-enzyme interactions and biochemical systems theory,” Mathematical Biosciences, vol. 94, no. 2, pp. 161–193, 1989. View at Google Scholar · View at Scopus
  57. A. Sorribas, “Optimal strategies for modeling biochemical systems,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  58. F. S. Wang, C. L. Ko, and E. O. Voit, “Kinetic modeling using S-systems and lin-log approaches,” Biochemical Engineering Journal, vol. 33, no. 3, pp. 238–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. A. Savageau, “Dominance according to metabolic control analysis: major achievement or house of cards?” Journal of Theoretical Biology, vol. 154, no. 1, pp. 131–136, 1992. View at Google Scholar · View at Scopus
  60. M. A. Savageau, “Michaelis-Menten mechanism reconsidered: implications of fractal kinetics,” Journal of Theoretical Biology, vol. 176, no. 1, pp. 115–124, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Savageau, “Metabolite channeling: implications for regulation of metabolism and for quantitative description of reactions in vivo,” Journal of Theoretical Biology, vol. 152, no. 1, pp. 85–92, 1991. View at Google Scholar · View at Scopus
  62. J. J. Heijnen, “Approximative kinetic formats used in metabolic network modeling,” Biotechnology and Bioengineering, vol. 91, no. 5, pp. 534–545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. R. C. H. del Rosario, E. Mendoza, and E. O. Voit, “Challenges in lin-log modelling of glycolysis in Lactococcus lactis,” IET Systems Biology, vol. 2, no. 3, pp. 136–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. O. Voit and N. V. Torres, “Simulation and steady-state optimization of integrated biochemical systems: theory and applications in biotechnology,” in Proceedings of the EUROSIM Simulation Congress, F. Breitenecker and I. Husinsky, Eds., Elsevier Science B.V., Vienna, Austria, 19951995.
  65. N. V. Torres, F. Alvarez-Vasquez, and E. O. Voit, “Optimization of biotechnological processes with S-system models. Methodology and applications to fungal metabolism,” in Handbook of Fungal Biotechnology, D. K. Arora, Ed., Marcel Dekker, New York, NY, USA, 2th edition, 2002. View at Google Scholar
  66. N. V. Torres, E. O. Voit, C. Glez-Alcón, and F. Rodríguez, “A novel approach to design of overexpression strategy for metabolic engineering. Application to the carbohydrate metabolism in the citric acid producing mould Aspergillus niger,” Food Technology and Biotechnology, vol. 36, no. 3, pp. 177–184, 1998. View at Google Scholar · View at Scopus
  67. E. O. Voit and N. V. Torres, “Canonical modeling of complex pathways in biotechnology (invited review),” Recent Research Developments in Biotechnology & Bioengineering, vol. 1, pp. 321–341, 1998. View at Google Scholar
  68. I. C. Chou and E. O. Voit, “Recent developments in parameter estimation and structure identification of biochemical and genomic systems,” Mathematical Biosciences, vol. 219, no. 2, pp. 57–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. E. O. Voit, S. Marino, and R. Lall, “Challenges for the identification of biological systems from in vivo time series data,” In Silico Biology, vol. 5, no. 2, pp. 83–92, 2005. View at Google Scholar · View at Scopus
  70. E. O. Voit, “Model identification: a key challenge is computational systems biology,” in Optimization and Systems Biology, D.-Z. Du and X. S. Shang, Eds., pp. 1–12, World Publishing Corp., 2008. View at Google Scholar
  71. E. O. Voit and I.-C. Chou, “Parameter estimation in canonical biological systems models,” International Journal of Systems and Synthetic Biology, vol. 1, pp. 1–19, 2010. View at Google Scholar
  72. E. O. Voit, “What if the fit is unfit? Criteria for biological systems estimation beyond residual errors,” in Applied Statistics for Biological Networks, M. Dehmer, F. Emmert-Streib, and A. Salvador, Eds., pp. 183–200, John Wiley and Sons, New York, NY, USA, 2011. View at Google Scholar
  73. M. A. Savageau, “A theory of alternative designs for biochemical control systems,” Biomedica Biochimica Acta, vol. 44, no. 6, pp. 875–880, 1985. View at Google Scholar · View at Scopus
  74. M. A. Savageau, “Coupled circuits of gene regulation,” in Sequence Specificity in Transcription and Translation, R. R. Calendar and L. Gold, Eds., pp. 633–642, A. R. Liss, New York, NY, USA, 1985. View at Google Scholar
  75. M. A. Savageau, “Are there rules governing patterns of regulation?” in Theoretical Biology-Epigenetic and Evolutionary Order, B. C. Goodwin and P. T. Saunders, Eds., Edinburgh, UK, Edinburgh University Press, 1989. View at Google Scholar
  76. E. O. Voit, “Design principles and operating principles: the yin and yang of optimal functioning,” Mathematical Biosciences, vol. 182, no. 1, pp. 81–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. E. O. Voit, “Design and operation: keys to understanding biological systems,” in Function and Regulation of Cellular Systems: Experiments and Models, A. Deutsch, J. Howard, M. Falcke, and W. Zimmermann, Eds., Birkhäuser, 2004. View at Google Scholar
  78. R. Alves and A. Sorribas, “Special issue on biological design principles,” Mathematical Biosciences, vol. 231, no. 1, pp. 1–2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. E. O. Voit and P. F. Rust, “Invited Tutorial: S-system analysis of continuous univariate probability distributions,” Journal of Statistical Computing and Simulation, vol. 42, pp. 187–249, 1992. View at Google Scholar
  80. A. Sorribas, E. O. Voit, P. F. Rust, and J. Sentis, “S-systems: a useful representation for computing statistical distributions,” Biometric Bulletin, vol. 7, p. 19, 1990. View at Google Scholar
  81. E. O. Voit, “Canonical modeling: a link between environmental models and statistics,” Austrian Journal for Statistics, vol. 27, pp. 109–121, 1998. View at Google Scholar
  82. M. A. Savageau, “20 years of S-systems,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 1–44, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  83. E. O. Voit, D. H. Irvine, and M. A. Savageau, The User's Guide to ESSYNS, Medical University of South Carolina Press, Charleston, SC, USA, 1989.
  84. D. H. Irvine, E. O. Voit, and M. A. Savageau, “Analysis of complex dynamic networks witrh ESSYNS,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 133–141, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  85. D. H. Irvine, M. A. Savageau, and E. O. Voit, “Numerical analysis of S-systems with ESSYNS,” in Canonical Nonlinear Modeling. S-system Approach to Understanding Complexity, E. O. Voit, Ed., pp. 133–141, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  86. D. H. Irvine, “Efficient solution of nonlinear models expressed in S-system canonical form,” Mathematical and Computer Modelling, vol. 11, pp. 123–128, 1988. View at Google Scholar · View at Scopus
  87. D. H. Irvine and M. A. Savageau, “Efficient solution of nonlinear ordinary differential equations expressed in S-system canonical form,” SIAM Journal on Numerical Analysis, vol. 27, no. 3, pp. 704–735, 1990. View at Google Scholar · View at Scopus
  88. F. Shiraishi, H. Takeuchi, T. Hasegawa, and H. Nagasue, “A Taylor-series solution in Cartesian space to GMA-system equations and its application to initial-value problems,” Applied Mathematics and Computation, vol. 127, no. 1, pp. 103–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Ferreira, Power Law Analysis and Simulation, Version 1.2, 2000.
  90. Y. Yamada, A. Kinoshita, Y. Nakayama, and M. Tomita, “Automatic transformation of kinetic equations into S-system and GMA forms,” Genome Informatics, vol. 13, pp. 482–483, 2002. View at Google Scholar
  91. M. Okamoto, Y. Morita, D. Tominaga et al., “Design of virtual-labo-system for metabolic engineering: development of biochemical engineering system analyzing tool-kit (BEST KIT),” Computers and Chemical Engineering, vol. 21, no. 1, pp. S745–S750, 1997. View at Google Scholar · View at Scopus
  92. J. Yoshimura, T. Shimonobou, T. Sekiguchi, and M. Okamoto, “Development of the parameter-fitting module for web-based biochemical reaction simulator BEST-KIT,” Chem-Bioinformatics Journal, vol. 3, pp. 114–129, 2003. View at Google Scholar
  93. T. Sekiguchi and M. Okamoto, “WinBEST-KIT: windows-based biochemical reaction simulator for metabolic pathways,” Journal of Bioinformatics and Computational Biology, vol. 4, no. 3, pp. 621–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Vera, C. Sun, Y. Oertel, and O. Wolkenhauer, “PLMaddon: a power-law module for the Matlab SBToolbox,” Bioinformatics, vol. 23, no. 19, pp. 2638–2640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. J. L. Luo, D. Frank Hsu, and C. Y. Kao, “Constructing a SMBL-based S-system simulation platform,” in Proceedings of the Emerging Information Technology Conference, pp. 170–171, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Dräger, N. Hassis, J. Supper, A. Schröder, and A. Zell, “SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks,” BMC Systems Biology, vol. 2, article 39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. Cadlive CADLIVE (Computer-Aided Design of LIVing systEms), 2009, http://www.cadlive.jp/.
  98. J. Vera and N. V. Torres, “MetMAP: an integrated Matlab package for analysis and optimization of metabolic systems,” In Silico Biology, vol. 4, no. 2, pp. 97–108, 2004. View at Google Scholar · View at Scopus
  99. M. A. Savageau, “Software for design space analysis,” 2010, http://www.bme.ucdavis.edu/savageaulab/research/projects/.
  100. M. A. Savageau, “Biochemical systems analysis—II. The steady-state solutions for an n-pool system using a power-law approximation,” Journal of Theoretical Biology, vol. 25, no. 3, pp. 370–379, 1969. View at Google Scholar · View at Scopus
  101. M. A. Savageau, “Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions,” Journal of Theoretical Biology, vol. 25, no. 3, pp. 365–369, 1969. View at Google Scholar · View at Scopus
  102. M. A. Savageau, “Biochemical systems analysis—III—dynamic solutions using a power-law approximation,” Journal of Theoretical Biology, vol. 26, no. 2, pp. 215–226, 1970. View at Google Scholar · View at Scopus
  103. D. Garfinkel, L. Garfinkel, M. Pring, S. B. Green, and B. Chance, “Computer applications to biochemical kinetics,” Annual Review of Biochemistry, vol. 39, pp. 473–498, 1970. View at Google Scholar · View at Scopus
  104. D. Garfinkel, “The role of computer simulation in biochemistry,” Computers and Biomedical Research, vol. 2, pp. 31–44, 1968. View at Google Scholar
  105. D. Garfinkel, “Computer-based modeling of biological systems which are inherently complex: problems, strategies, and methods,” Biomedica Biochimica Acta, vol. 44, no. 6, pp. 823–829, 1985. View at Google Scholar · View at Scopus
  106. M. V. Henri, Lois Générales de l’Action des Diastases, Hermann, Paris, France, 1903.
  107. L. Michaelis and M. L. Menten, “Die Kinetik der Inver-tinwirkung,” Biochemische Zeitschrift, vol. 49, pp. 333–369, 1913. View at Google Scholar
  108. A. V. Hill, “Possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves,” Journal of Physiology, vol. 40, pp. 4–8, 1910. View at Google Scholar
  109. A. R. Schulz, Enzyme Kinetics: From Diastase to Multi-Enzyme Systems, Cambridge University Press, New York, NY, USA, 1994.
  110. R. Heinrich and T. A. Rapoport, “A linear steady state treatment of enzymatic chains: general properties, control and effector strength,” European Journal of Biochemistry, vol. 42, no. 1, pp. 89–95, 1974. View at Google Scholar · View at Scopus
  111. R. Heinrich, S. M. Rapoport, and T. A. Rapoport, “Metabolic regulation and mathematical models,” Progress in Biophysics and Molecular Biology, vol. 32, no. 1, pp. 1–82, 1977. View at Google Scholar · View at Scopus
  112. H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, Princeton, NJ, USA, 1945.
  113. M. A. Savageau and E. O. Voit, “Recasting nonlinear differential equations as S-systems: a canonical nonlinear form,” Mathematical Biosciences, vol. 87, no. 1, pp. 83–115, 1987. View at Google Scholar · View at Scopus
  114. M. A. Savageau, “Demand theory of gene regulation—II—quantitative application to the lactose and maltose operons of Escherichia coli,” Genetics, vol. 149, no. 4, pp. 1677–1691, 1998. View at Google Scholar · View at Scopus
  115. M. A. Savageau, “Demand theory of gene regulation—I—quantitative development of the theory,” Genetics, vol. 149, no. 4, pp. 1665–1676, 1998. View at Google Scholar · View at Scopus
  116. G. Craciun and M. Feinberg, “Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models,” IEE Proceedings, vol. 153, no. 4, pp. 179–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Shinar and M. Feinberg, “Concordant chemical reaction networks,” Mathematical Biosciences, vol. 240, no. 2, pp. 92–113, 2012. View at Google Scholar
  118. M. A. Savageau, “The power-law formalism: generic properties and relatedness to other canonical nonlinear formalisms,” in Proceedings of the 4th International Conference on Soft Computing, Fuzzy Logic Institute, Iizuka, Japan, 1996.
  119. E. O. Voit and P. J. Sands, “Modeling forest growth—I. Canonical approach,” Ecological Modelling, vol. 86, no. 1, pp. 51–71, 1996. View at Google Scholar · View at Scopus
  120. F. Shiraishi and S. Fujiwara, “An efficient method for solving two-point boundary value problems with extremely high accuracy,” Journal of Chemical Engineering of Japan, vol. 29, no. 1, pp. 88–94, 1996. View at Google Scholar · View at Scopus
  121. F. Shiraishi, “Highly accurate solution of the axial dispersion model expressed in S-system canonical form by Taylor series method,” Chemical Engineering Journal, vol. 83, no. 3, pp. 175–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Shiraishi and E. O. Voit, “Solution of a two-point boundary value model of immobilized enzyme reactions, using an S-system-based root-finding method,” Applied Mathematics and Computation, vol. 127, no. 2-3, pp. 289–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Shiraishi, S. Furuta, T. Ishimatsu, and J. Akhter, “A simple and highly accurate numerical differentiation method for sensitivity analysis of large-scale metabolic reaction systems,” Mathematical Biosciences, vol. 208, no. 2, pp. 590–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Shiraishi, Y. Hatoh, and T. Irie, “An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory,” Journal of Theoretical Biology, vol. 234, no. 1, pp. 79–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. J. H. Schwacke and E. O. Voit, “Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems,” Journal of Theoretical Biology, vol. 236, no. 1, pp. 21–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. F. Shiraishi, T. Tomita, M. Iwata, A. A. Berrada, and H. Hirayama, “A reliable Taylor series-based computational method for the calculation of dynamic sensitivities in large-scale metabolic reaction systems: algorithm and software evaluation,” Mathematical Biosciences, vol. 222, no. 2, pp. 73–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. F. Shiraishi, M. Egashira, M. Iwata, K. Sriyudthsak, and K. Hattori, “Highly reliable computation of dynamic sensitivities in metabolic reaction systems by a variable-step Taylor series method,” Asia-Pacific Journal of Chemical Engineering, vol. 7, pp. S32–S38, 2012. View at Google Scholar
  128. M. A. Savageau, “Growth of complex systems can be related to the properties of their underlying determinants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 11, pp. 5413–5417, 1979. View at Google Scholar · View at Scopus
  129. S. Marino and E. O. Voit, “An automated procedure for the extraction of metabolic network information from time series data,” Journal of Bioinformatics and Computational Biology, vol. 4, no. 3, pp. 665–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. G. R. Gavalas, Nonlinear Differential Equations of Chemically Reacting Systems, Springer, Berlin, Germany, 1968.
  131. A. Lotka, Elements of Physical Biology, Williams and Wilkins, 1924, reprinted as “Elements of Mathematical Biology”, Dover, New York, NY, USA, 1956.
  132. R. M. May, “Stability and complexity in model ecosystems,” Monographs in Population Biology, vol. 6, pp. 1–235, 1973. View at Google Scholar · View at Scopus
  133. E. P. Odum, Fundamentals of Ecology, Saunders, Philadelphia, Pa, USA, 1953.
  134. M. Peschel and W. Mende, The Predator-Prey Model: Do We Live in a Volterra World?Akademie, Berlin, Germany, 1986.
  135. V. Volterra, “Variazioni e fluttuazioni del numero d'individui in specie animali conviventi,” Memorie della Reale Accademia Nazionale dei Lincei, vol. 2, pp. 31–113, 1926. View at Google Scholar
  136. E. O. Voit and M. A. Savageau, “Equivalence between S-systems and Volterra systems,” Mathematical Biosciences, vol. 78, no. 1, pp. 47–55, 1986. View at Publisher · View at Google Scholar · View at Scopus
  137. J. C. Sprott, J. A. Vano, J. C. Wildenberg, M. B. Anderson, and J. K. Noel, “Coexistence and chaos in complex ecologies,” Physics Letters, Section A, vol. 335, no. 2-3, pp. 207–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and J. C. Sprott, “Chaos in low-dimensional Lotka-Volterra models of competition,” Nonlinearity, vol. 19, no. 10, article 006, pp. 2391–2404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, McGraw-Hill, New York, NY, USA, 1977.
  140. S. Aiba, A. I. Shoda, and A. I. Nagatani, “Kinetics of product inhibition in alcohol fermentation,” Biotechnology and Bioengineering, vol. 67, no. 6, pp. 689–690, 2000. View at Google Scholar · View at Scopus
  141. S. Aiba, A. I. Shoda, and A. I. Nagatani, “Reassessment of the product inhibition in alcohol fermentation,” Journal of Fermentation Technology of Japan, vol. 47, pp. 790–805, 1969. View at Google Scholar
  142. R. Díaz-Sierra, B. Hernández-Bermejo, and V. Fairén, “Graph-theoretic description of the interplay between non-linearity and connectivity in biological systems,” Mathematical Biosciences, vol. 156, no. 1-2, pp. 229–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  143. V. Fairén and B. Hernández-Bermejo, “Mass action law conjugate representation for general chemical mechanisms,” Journal of Physical Chemistry, vol. 100, no. 49, pp. 19023–19028, 1996. View at Google Scholar · View at Scopus
  144. B. Hernández-Bermejo and V. Fairén, “Lotka-Volterra representation of general nonlinear systems,” Mathematical Biosciences, vol. 140, no. 1, pp. 1–32, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. B. Hernández-Bermejo and V. Fairén, “Simple evaluation of Casimir invariants in finite-dimensional Poisson systems,” Physics Letters, Section A, vol. 241, no. 3, pp. 148–154, 1998. View at Google Scholar · View at Scopus
  146. B. Hernández-Bermejo and V. Fairén, “Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems,” Journal of Mathematical Physics, vol. 39, no. 11, pp. 6162–6174, 1998. View at Google Scholar · View at Scopus
  147. B. Hernández-Bermejo, V. Fairén, and L. Brenig, “Algebraic recasting of nonlinear systems of ODEs into universal formats,” Journal of Physics A, vol. 31, no. 10, pp. 2415–2430, 1998. View at Publisher · View at Google Scholar · View at Scopus
  148. B. Hernández-Bermejo, “Renormalization group approach to power-law modeling of complex metabolic networks,” Journal of Theoretical Biology, vol. 265, no. 3, pp. 422–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. V. Hatzimanikatis and J. E. Bailey, “MCA has more to say,” Journal of Theoretical Biology, vol. 182, no. 3, pp. 233–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  150. D. Visser and J. J. Heijnen, “The mathematics of Metabolic Control Analysis revisited,” Metabolic Engineering, vol. 4, no. 2, pp. 114–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. L. Wu, W. Wang, W. A. Van Winden, W. M. Van Gulik, and J. J. Heijnen, “A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics,” European Journal of Biochemistry, vol. 271, no. 16, pp. 3348–3359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. E. O. Voit, “Accuracy of alternative nonlinear power-law models for biochemical systems: advantages of S-systems,” in IMACS Transactions on Scientific Computing: Modelling od Biomedical Systems, J. Eisenfeld and M. Witten, Eds., vol. 5, Elsevier, North Holland, The Netherlands, 1986.
  153. M. A. Savageau, “Control of metabolism: where is the theory?” Trends in Biochemical Sciences, vol. 12, pp. 219–220, 1987. View at Google Scholar · View at Scopus
  154. M. A. Savageau, “Biochemical systems theory—alternative views of metabolic control,” in Control of Metabolic Processes, A. Cornish-Bowden and M. L. Cardenas, Eds., pp. 69–87, Elsevier, Amsterdam, The Netherlands, 1990. View at Google Scholar
  155. E. O. Voit, “Comparison of accuracy of alternative models for biochemical pathways,” in Proceedings of the Advanced NATO Research Workshop on Control in Metabolic Systems, A. Cornish-Bowden and M. L. Cárdenas, Eds., pp. 89–100, Plenum Press, 1990.
  156. A. Sorribas, “Discovering another view of control analysis,” Trends in Biochemical Sciences, vol. 12, pp. 221–222, 1987. View at Google Scholar · View at Scopus
  157. A. Sorribas, “Alternative S-system representations for reversible biochemical pathways,” Mathematical and Computer Modelling, vol. 11, pp. 129–133, 1988. View at Google Scholar · View at Scopus
  158. A. Sorribas, “Modeling intracellular biochemical pathways that involve multi-enzyme complexes. A critical evaluation of alternative theories of intact biochemical systems,” in Proceedings of the 1st IFAC Symposium on Modelling and Control in Biomedical Systems, pp. 239–249, April 1988. View at Scopus
  159. D. Visser, R. Van Der Heijden, K. Mauch, M. Reuss, and S. Heijnen, “Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae,” Metabolic Engineering, vol. 2, no. 3, pp. 252–275, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Marin-Sanguino, N. V. Torres, E. R. Mendoza, and D. Oesterhelt, “Metabolic Engineering with power-law and linear-logarithmic systems,” Mathematical Biosciences, vol. 218, no. 1, pp. 50–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. S. W. Omholt, E. Plahte, L. Øyehaug, and K. Xiang, “Gene regulatory networks generating the phenomena of additivity, dominance and epistasis,” Genetics, vol. 155, no. 2, pp. 969–980, 2000. View at Google Scholar · View at Scopus
  162. P. Ao, “Metabolic network modelling: including stochastic effects,” Computers and Chemical Engineering, vol. 29, no. 11-12, pp. 2297–2303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. M. C. Kohn, “Use of sensitivity analysis to assess reliability of metabolic and physiological models,” Risk Analysis, vol. 22, no. 3, pp. 623–631, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Bewick, R. Yang, and M. Zhang, “Complex mathematical models of biology at the nanoscale,” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, vol. 1, no. 6, pp. 650–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. W. H. Huang and F. S. Wang, “Kinetic modeling of batch fermentation for mixed-sugar to ethanol production,” Journal of the Taiwan Institute of Chemical Engineers, vol. 41, no. 4, pp. 434–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. F. Shiraishi, K. Sriyudthsak, and Y. Suzuki, “Calculation errors of time-varying flux control coefficients obtained from elasticity coefficients by means of summation and connectivity theorems in metabolic control analysis,” Mathematical Biosciences, vol. 223, no. 2, pp. 105–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. R. S. Costa, D. Machado, I. Rocha, and E. C. Ferreira, “Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations,” BioSystems, vol. 100, no. 2, pp. 150–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Sorribas, B. Hernández-Bermejo, E. Vilaprinyo, and R. Alves, “Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations,” Biotechnology and Bioengineering, vol. 97, no. 5, pp. 1259–1277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Sorribas, E. Vilaprinyo, and R. Alves, “Approximate kinetic formalisms for modeling metabolic networks: does anything work?” Philippines Information Technology Journal, vol. 1, 2008. View at Google Scholar
  170. S. Vinga, A. R. Neves, H. Santos, B. W. Brandt, and S. A. L. M. Kooijman, “Subcellular metabolic organization in the context of dynamic energy budget and biochemical systems theories,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1557, pp. 3429–3442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. N. Tenazinha and S. Vinga, “A survey on methods for modeling and analyzing integrated biological networks,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 4, pp. 943–958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. J. Wu and E. Voit, “Hybrid modelling in biochemical systems theory by means of functional petri nets,” Journal of Bioinformatics and Computational Biology, vol. 7, no. 1, pp. 107–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Wu and E. Voit, “Integrative biological systems modeling: challenges and opportunities,” Frontiers of Computer Science in China, vol. 3, no. 1, pp. 92–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Wu, Z. Qi, and E. O. Voit, “Investigation of delays and noise in dopamine signaling with hybrid functional Petri nets,” In Silico Biology, vol. 10, Article ID 0005, 2010. View at Google Scholar
  175. A. Marin-Sanguino and E. R. Mendoza, “Hybrid modeling in computational neuropsychiatry,” Pharmacopsychiatry, vol. 41, no. 1, supplement, pp. S85–S88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Wu, B. Vidakovic, and E. O. Voit, “Constructing stochastic models from deterministic process equations by propensity adjustment,” BMC Systems Biology, vol. 5, article 187, 2011. View at Google Scholar
  177. J. Paulsson, “The stochastic nature of intracellular control circuits,” Uppsala University, 2000, http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-465.
  178. K. M. Mueller, S. A. Burns, and M. A. Savageau, “A comparison of the monomial method and the S-system method for solving systems of algebraic equations,” Applied Mathematics and Computation, vol. 90, pp. 167–180, 1998. View at Google Scholar
  179. M. A. Savageau, “Finding multiple roots of nonlinear algebraic equations using S-system methodology,” Applied Mathematics and Computation, vol. 55, no. 2-3, pp. 187–199, 1993. View at Google Scholar · View at Scopus
  180. F. Nabli and S. Soliman, “Steady-state solution of biochemical systems, beyond S-systems via T-invariants,” in Proceedings of the 8th International Conference on Computational Methods in Systems Biology (CMSB '10), pp. 14–22, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. J. A. Torsella and A. M. Bin Razali, “An analysis of forestry data,” in Canonical Nonlinear Modeling: S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 181–199, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  182. E. O. Voit, W. C. Newstetter, and M. L. Kemp, “A feel for systems,” Molecular Systems Biology, vol. 8, article 609, 2012. View at Publisher · View at Google Scholar
  183. N. V. Torres, “Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger—II—sensitivity analysis,” Biotechnology and Bioengineering, vol. 44, no. 1, pp. 112–118, 1994. View at Publisher · View at Google Scholar · View at Scopus
  184. N. V. Torres, “Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger—I—model definition and stability of the steady state,” Biotechnology and Bioengineering, vol. 44, no. 1, pp. 104–111, 1994. View at Publisher · View at Google Scholar · View at Scopus
  185. R. Curto, A. Sorribas, and M. Cascante, “Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature,” Mathematical Biosciences, vol. 130, no. 1, pp. 25–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  186. R. Curto, E. O. Voit, A. Sorribas, and M. Cascante, “Mathematical models of purine metabolism in man,” Mathematical Biosciences, vol. 151, no. 1, pp. 1–49, 1998. View at Publisher · View at Google Scholar · View at Scopus
  187. F. Alvarez-Vasquez, K. J. Sims, Y. A. Hannun, and E. O. Voit, “Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models,” Journal of Theoretical Biology, vol. 226, no. 3, pp. 265–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. F. Alvarez-Vasquez, H. Riezman, Y. A. Hannun, and E. O. Voit, “Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae,” PloS ONE, vol. 6, Article ID e28344, 2011. View at Google Scholar
  189. T. Hasegawa and F. Shiraishi, “Application of biochemical systems theory to determination of intrinsic kinetic parameters of an immobilized enzyme reaction following Michaelis-Menten kinetics,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., World Scientific, Singapore, 1996. View at Google Scholar
  190. A. Sorribas, J. March, and J. Trujillano, “A new parametric method based on S-distributions for computing receiver operating characteristic curves for continuous diagnosis tests,” Statistics in Medicine, vol. 21, no. 9, pp. 1213–1235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Sorribas, J. B. Lozano, and V. Fairén, “Deriving chemical and biochemical model networks from experimental measurements,” Recent Developments in Chemical Physics, vol. 2, pp. 553–573, 1998. View at Google Scholar
  192. B. H. Bermejo, V. Fairén, and A. Sorribas, “Power-law modeling based on least-squares minimization criteria,” Mathematical Biosciences, vol. 161, no. 1-2, pp. 83–94, 1999. View at Publisher · View at Google Scholar · View at Scopus
  193. B. Hernández-Bermejo, V. Fairén, and A. Sorribas, “Power-law modeling based on least-squares criteria: consequences for system analysis and simulation,” Mathematical Biosciences, vol. 167, no. 2, pp. 87–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  194. R. Díaz-Sierra and V. Fairén, “Simplified method for the computation of parameters of power-law rate equations from time-series,” Mathematical Biosciences, vol. 171, no. 1, pp. 1–19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  195. T. Kitayama, A. Kinoshita, M. Sugimoto, Y. Nakayama, and M. Tomita, “A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles,” Theoretical Biology and Medical Modelling, vol. 3, article 24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  196. A. Sorribas and M. Cascante, “Assessment of the regulatory properties of a metabolic pathway: parameter estimation from steady-state measurements,” in Proceedings of the World Congress of Nonlinear Analysts, V. Lakshmikantham, Ed., vol. 4, pp. 3357–3368, Walter de Gruyter, Berlin, Germany, 1992.
  197. A. Sorribas, S. Samitier, E. I. Canela, and M. Cascante, “Metabolic pathway characterization from transient response data obtained in situ: parameter estimation in S-system models,” Journal of Theoretical Biology, vol. 162, no. 1, pp. 81–102, 1993. View at Publisher · View at Google Scholar · View at Scopus
  198. A. Sorribas and M. Cascante, “Steady-state measurements and identifiability of regulatory patterns in metabolic studies,” in Modern Trends in Biothermokinetics, S. Schuster, Ed., pp. 125–131, Plenum Press, New York, NY, USA, 1993. View at Google Scholar
  199. A. Sorribas and M. Cascante, “Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism,” Biochemical Journal, vol. 298, no. 2, pp. 303–311, 1994. View at Google Scholar · View at Scopus
  200. M. A. Savageau, “Concepts relating the behavior of biochemical systems to their underlying molecular properties,” Archives of Biochemistry and Biophysics, vol. 145, no. 2, pp. 612–621, 1971. View at Google Scholar · View at Scopus
  201. E. O. Voit and M. A. Savageau, “Power-law approach to modeling biological systems—II. Application to ethanol production,” Journal of Fermentation Technology, vol. 60, pp. 229–232, 1982. View at Google Scholar
  202. J. M. Varah, “A spline least squares method for numerical parameter estimation in differential equations,” SIAM Journal on Scientific and Statistical Computing, vol. 3, pp. 28–46, 1982. View at Google Scholar
  203. E. O. Voit and J. Almeida, “Decoupling dynamical systems for pathway identification from metabolic profiles,” Bioinformatics, vol. 20, no. 11, pp. 1670–1681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. N. J.-B. Brunel, “Parameter estimation of ODE’s via nonparametric estimators,” Electronic Journal of Statistics, vol. 2, pp. 1242–1267, 2008. View at Google Scholar
  205. E. J. Crampin, S. Schnell, and P. E. McSharry, “Mathematical and computational techniques to deduce complex biochemical reaction mechanisms,” Progress in Biophysics and Molecular Biology, vol. 86, no. 1, pp. 77–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  206. P. Gennemark and D. Wedelin, “Efficient algorithms for ordinary differential equation model identification of biological systems,” IET Systems Biology, vol. 1, no. 2, pp. 120–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. P. Gennemark and D. Wedelin, “Benchmarks for identification of ordinary differential equations from time series data,” Bioinformatics, vol. 25, no. 6, pp. 780–786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. M. T. Swain, J. J. Mandel, and W. Dubitzky, “Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks,” BMC Bioinformatics, vol. 11, article 459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. J. Sun, J. M. Garibaldi, and C. Hodgman, “Parameter estimation using metaheuristics in systems biology: a comprehensive review,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, pp. 185–202, 2012. View at Google Scholar
  210. S. Gugushvili and C. A. J. Klaassen, “n-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing,” Bernoulli, vol. 18, pp. 1061–1098, 2012. View at Google Scholar
  211. C. Sima, J. Hua, and S. Jung, “Inference of gene regulatory networks using time-series data: a survey,” Current Genomics, vol. 10, no. 6, pp. 416–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. S. Džeroski and L. Todorovski, “Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data,” Current Opinion in Biotechnology, vol. 19, no. 4, pp. 360–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. L. Todorovski and S. Džeroski, “Modeling the dynamics of biological networks from time course data,” in Systems Biology for Signaling Networks, S. Choi, Ed., vol. 1, pp. 275–294, Springer, 2010. View at Google Scholar
  214. W. P. Lee and W. S. Tzou, “Computational methods for discovering gene networks from expression data,” Briefings in Bioinformatics, vol. 10, no. 4, pp. 408–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  215. T. Akutsu, S. Miyano, and S. Kuhara, “Automated construction and analysis of the design space for biochemical systems,” Bioinformatics, vol. 16, no. 8, pp. 727–734, 2000. View at Google Scholar
  216. Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi, “Development of a system for the inference of large scale genetic networks,” in Proceedings of the Pacific Symposium on Biocomputing, pp. 446–458, 2001.
  217. A. Shin and H. Iba, “Construction of genetic network using evolutionary algorithm and combined fitness function,” Genome Informatics, vol. 14, pp. 94–103, 2003. View at Google Scholar · View at Scopus
  218. Y. Maki, Y. Takahashi, Y. Arikawa et al., “An integrated comprehensive workbench for inferring genetic networks: VoyaGene,” Journal of Bioinformatics and Computational Biology, vol. 2, no. 3, pp. 533–550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  219. S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita, “Dynamics modeling of genetic networks using genetic algorithm and S-system,” Bioinformatics, vol. 19, no. 5, pp. 643–650, 2003. View at Publisher · View at Google Scholar · View at Scopus
  220. S. Kimura, K. Sonoda, S. Yamane, H. Maeda, K. Matsumura, and M. Hatakeyama, “Function approximation approach to the inference of reduced NGnet models of genetic networks,” BMC Bioinformatics, vol. 9, article 23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. N. Noman and H. Iba, “Reverse engineering genetic networks using evolutionary computation,” Genome Informatics, vol. 16, no. 2, pp. 205–214, 2005. View at Google Scholar · View at Scopus
  222. Y. Maki, T. Ueda, M. Okamoto, N. Uematsu, Y. Inamura, and Y. Eguchi, “Inference of genetic network using the expression profile time course data of mouse P19 cells,” Genome Informatiics, vol. 13, pp. 382–383, 2002. View at Google Scholar
  223. S. Kimura, M. Hatakeyama, and A. Konagaya, “Inference of S-system models of genetic networks from noisy time-series data,” Chem-Bio Informatics Journal, vol. 4, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  224. N. Noman and H. Iba, “Inference of gene regulatory networks using S-system and Differential Evolution,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '05), pp. 439–446, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  225. N. Noman and H. Iba, “Inference of genetic networks using S-system: information criteria for model selection,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference 2006, pp. 263–270, July 2006. View at Scopus
  226. S. J. Wu, C. H. Chou, C. T. Wu, and T. T. Lee, “Inference of genetic network of Xenopus frog egg: improved genetic algorithm,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 4147–4150, 2006.
  227. S. Kimura, K. Ide, A. Kashihara et al., “Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  228. S. Kimura, K. Matsumura, and M. Okada-Hatakeyama, “Efficient parameter estimation for the inference of S-system models of genetic networks: proposition of further problem decomposition and alternate function optimization,” Chem-Bio Informatics Journal, vol. 9, 2009. View at Google Scholar
  229. S. Kimura, K. Matsumura, and M. Okada-Hatakeyama, “Efficient parameter estimation for the inference of S-system models of genetic networks: proposition of further problem decomposition and alternate function optimization,” Chem-Bio Informatics Journal, vol. 11, no. 1, pp. 24–40, 2011. View at Google Scholar · View at Scopus
  230. S. Kimura, K. Sonoda, S. Yamane, K. Matsumura, and M. Hatakeyama, “Function approximation approach to the inference of normalized Gaussian network models of genetic networks,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '06), pp. 4525–4532, July 2006. View at Scopus
  231. S. Kimura, K. Sonoda, S. Yamane, K. Matsumura, and M. Hatakeyama, “Function approximation approach to the inference of reduced NGnet models of genetic networks,” IPSJ Transactions on Bioinformatics, vol. 2007, pp. 9–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  232. S. Kimura, S. Nakayama, and M. Hatakeyama, “Genetic network inference as a series of discrimination tasks,” Bioinformatics, vol. 25, no. 7, pp. 918–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  233. S. Kimura, Y. Shiraishi, and M. Hatakeyama, “Inference of genetic networks using linear programming machines: application of a priori knowledge,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '09), pp. 1617–1624, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  234. S. Kimura, Y. Shiraishi, and M. Okada, “Inference of genetic networks using LPMs: assessment of confidence values of regulations,” Journal of Bioinformatics and Computational Biology, vol. 8, no. 4, pp. 661–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. S. Kimura, K. Matsumura, and M. Okada-Hatakeyama, “Bootstrap analysis of genetic networks inferred by the method using LPMs,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA '10), pp. 296–299, IEEE Computer Society, Washington, DC, USA, 2010.
  236. S. Kimura, Y. Amano, K. Matsumura, and M. Okada-Hatakeyama, “Effective parameter estimation for S-system models using LPMs and evolutionary algorithms,” in Proceedings of the 6th IEEE World Congress on Computational Intelligence, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. S. Kimura, D. Araki, K. Matsumura, and M. Okada-Hatakeyama, “Inference of S-system models of genetic networks by solving one-dimensional function optimization problems,” Mathematical Biosciences, vol. 235, pp. 161–170, 2012. View at Google Scholar
  238. M. Nakatsui, T. Ueda, Y. Maki, I. Ono, and M. Okamoto, “Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression,” Mathematical Biosciences, vol. 215, no. 1, pp. 105–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  239. M. Nakatsui, T. Ueda, and M. Okamoto, “Integrated system for inference of gene expression network,” Genome Informatics, vol. 14, pp. 282–283, 2003. View at Google Scholar
  240. M. Nakatsui, T. Ueda, I. Ono, and M. Okamoto, “Control aspect of common interactions extracted from inferred network candidates of gene expression,” Genome Informatics, pp. P008–P009, 2004. View at Google Scholar
  241. M. Nakatsui, T. Ueda, I. Ono, and M. Okamoto, “Efficient method for extracting common core binomial genetic interactions,” Genome Informatics, vol. 215, pp. P148–P149, 2005. View at Google Scholar
  242. D. Tominaga and M. Okamoto, “Nonlinear mumerical optimization technique based on genetic algorithm for inverse problem,” Kagaku Kougaku Ronbunshu, vol. 25, pp. 220–225, 1999. View at Google Scholar
  243. D. Tominaga, N. Koga, and M. Okamoto, “Efficient numerical optimization algorithm based on genetic algorithm for inverse problem,” in Proceedings of the Genetic and Evolutionary Computation Conference, p. 261, 2000.
  244. T. Ueda, N. Koga, and M. Okamoto, “Efficient numerical optimization technique based on real-coded genetic algorithm,” Genome Informatics, vol. 12, pp. 451–453, 2001. View at Google Scholar
  245. M. Okamoto, D. Tominaga, N. Koga, and Y. Maki, “Efficient numerical optimization algorithm based on genetic algorithm for inverse problem,” in Proceedings of the 1st International Conference on Systems Biology, pp. 130–135, 2000.
  246. T. Ueda, I. Ono, and M. Okamoto, “Development of system identification technique based on real-coded genetic algorithm,” Genome Informatics, vol. 13, pp. 386–387, 2002. View at Google Scholar
  247. S. Kikuchi, D. Tominaga, M. Arita, and M. Tomita, “Pathway finding from given time-courses using genetic algorithm,” Genome Informatics, vol. 12, pp. 304–305, 2001. View at Google Scholar
  248. E. Sakamoto and H. Iba, “Inferring a system of differential equations for a gene regulatory network by using genetic programming,” in Proceedings of the Congress on Evolutionary Computation, pp. 720–726, May 2001. View at Scopus
  249. H. Wang, L. Qian, and E. Dougherty, “Inference of gene regulatory networks using S-system: a unified approach,” IET Systems Biology, vol. 4, no. 2, pp. 145–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  250. X. Yang, J. E. Dent, and C. Nardini, “An S-system parameter estimation method (SPEM) for biological networks,” Journal of Computational Biology, vol. 19, pp. 175–187, 2012. View at Google Scholar
  251. T. Nakayama, S. Seno, Y. Takenaka, and H. Matsuda, “Inference of S-system models of gene regulatory networks using immune algorithm,” Journal of Bioinformatics and Computational Biology, vol. 9, no. 1, supplement, pp. 75–86, 2011. View at Google Scholar
  252. L. Z. Liu, F. X. Wu, and W. J. Zhang, “Inference of biological S-system using the separable estimation method and the genetic algorithm,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 4, pp. 955–965, 2012. View at Google Scholar
  253. S. Ando and H. Iba, “Real-coded GA with multimodal uniform distribution,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 827–834, June 2004. View at Scopus
  254. W. C. Yeh, W. B. Lin, T. J. Hsieh, and S. L. Liu, “Feasible prediction in S-system models of genetic networks,” Expert Systems with Applications, vol. 38, no. 1, pp. 193–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  255. D. Y. Cho, K. H. Cho, and B. T. Zhang, “Identification of biochemical networks by S-tree based genetic programming,” Bioinformatics, vol. 22, no. 13, pp. 1631–1640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  256. I. Ono, N. Ono, Y. Seike, M. Nakatsui, R. Morishita, and M. Okamoto, “An evolutionary algorithm taking account of mutual interactions among substances for inference of genetic networks,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 2060–2067, June 2004. View at Scopus
  257. N. Noman and H. Iba, “Enhancing differential evolution performance with local search for high dimensional function optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 967–974, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. N. Noman and H. Iba, “A new generation alternation model for differential evolution,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference, pp. 1265–1272, July 2006. View at Scopus
  259. N. Noman and H. Iba, “Inferring gene regulatory networks using differential evolution with local search heuristics,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 4, pp. 634–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  260. T. Daisuke and P. Horton, “Inference of scale-free networks from gene expression time series,” Journal of Bioinformatics and Computational Biology, vol. 4, no. 2, pp. 503–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  261. T. Hasegawa and J. Yoshimura, “An effective method to increase solvability in biochemical systems using S-system,” Mathematical Biosciences, vol. 201, no. 1-2, pp. 125–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  262. S. Y. Ho, C. H. Hsieh, F. C. Yu, and H. L. Huang, “Evolutionary divide-and-conquer approach to inferring S-system models of genetic networks,” in Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC '05), pp. 691–698, September 2005. View at Scopus
  263. S.-Y. Ho, C.-H. Shieh, and F.-C. Yu, “Inference of S-system models for large-scale genetic networks,” in Proceedings of the 21st International Conference on Data Engineering Workshops (ICDEW '05), p. 1155, IEEE Computer Society, 2005.
  264. H. Imade, N. Mizuguchi, I. Ono, N. Ono, and M. Okamoto, ““Gridifying” an evolutionary algorithm for inference of genetic networks using the improved GOGA framework and its performance evaluation on OBI grid,” in Proceedings of the 1st International Workshop on Life Science Grid (LSGRID '04), pp. 171–186, June 2004. View at Scopus
  265. K.-Y. Kim, D.-Y. Cho, and B.-T. Zhang, “Multi-stage evolutionary algorithms for efficient identification of gene regulatory networks,” in Proceedings of the EvoWorkshops, pp. 45–56, Springer, 2006.
  266. S. Kimura, M. Hatakeyama, and A. Konagaya, “Inference of S-system models of genetic networks using a genetic local search,” in Proceedings of the Congress on Evolutionary Computation (CEC '03), pp. 631–638, IEEE Press, Canberra, Australia, 2003.
  267. S. Kimura, K. Sonoda, S. Yamane, K. Yoshida, K. Matsumura, and M. Hatakeyama, “Inference of genetic networks using a reduced NGnet model,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '07), pp. 932–937, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  268. Y. Matsubara, S. Kikuchi, M. Sugimoto, and M. Tomita, “Parameter estimation for stiff equations of biosystems using radial basis function networks,” BMC Bioinformatics, vol. 7, article 230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  269. R. Morishita, H. Imade, I. Ono, N. Ono, and M. Okamoto, “Finding multiple solutions based on an evolutionary algorithm for inference of genetic networks by S-system,” in Proceedings of the The Congress on Evolutionary Computation (CEC '03), pp. 615–622, 2003.
  270. M. Okamoto, T. Nonaka, S. Ochiai, and D. Tominaga, “Nonlinear numerical optimization with use of a hybrid Genetic Algorithm incorporating the Modified Powell method,” Applied Mathematics and Computation, vol. 91, no. 1, pp. 63–72, 1998. View at Google Scholar · View at Scopus
  271. T. Ueda, N. Koga, I. Ono, and M. Okamoto, “Application of numerical optimization technique based on real-coded genetic algorithm to inverse problem in biochemical systems,” in Proceedings of the Genetic and Evolutionary Computation Conference, p. 701, 2002.
  272. Z. Zhang, E. O. Voit, and L. H. Schwacke, “Parameter estimation and sensitivity analysis of S-systems using a genetic algorithm,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., pp. 155–158, World Scientific.
  273. L.-S. Shu, H.-L. Huang, S.-J. Ho, and S.-Y. Ho, “Establishing large-scale gene regulatory networks using a gene-knowledge-embedded evolutionary computation method,” in Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE '11), pp. 272–276, 2011.
  274. M. M. Hasan, N. Noman, and H. Iba, “A prior knowledge based approach to infer gene regulatory networks,” in Proceedings of the International Symposium on Biocomputing (ISB '10), February 2010. View at Publisher · View at Google Scholar · View at Scopus
  275. C. H. Chuang and C. L. Lin, “Estimation of noisy gene regulatory networks,” in Proceedings of the SICE Annual Conference, pp. 69–74, August 2010. View at Scopus
  276. A. R. Chowdhury and M. Chetty, “An improved method to infer gene regulatory networks using S-systems,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '11), pp. 1012–1019, 2011.
  277. S. J. Wu, C. T. Wu, and T. T. Lee, “Computation intelligent for eukaryotic cell-cycle gene network,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 2017–2020, 2006.
  278. S. J. Wu, C. T. Wu, G. H. Chou, and T. T. Lee, “Evolution—based gene regulatory network of yeast cell cycle,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1291–1295, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  279. P. C. Naval, L. G. Sison, and E. Mendoza, “Metabolic network parameter inference using particle swarm optimization,” in Proceedings of the International Conference on Molecular Systems Biology (ICMSB '06), Munich, Germany, 2006.
  280. P. C. Naval, L. G. Sison, and E. R. Mendoza, “Parameter estimation with term-wise decomposition in biochemical network GMA models by hybrid regularized least squares-particle swarm optimization,” in Proceedings of the 6th IEEE World Congress on Computational Intelligence, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  281. P. C. Naval, Robust term-wise parameter estimation in biochemical Generalized Mass Action (GMA) models by hybrid regularized least squares-particle swarm optimization [Dissertation], University of the Philippines, Diliman, Quezon City, 2007.
  282. B. Yang, M. Jiang, and Y. Chen, “A fast and efficient method for inferring structure and parameters of S-system models,” in Proceedings of the 11th International Conference on Hybrid Intelligent Systems (HIS '11), pp. 235–240, 2011.
  283. Y.-T. Hsiao and W.-P. Lee, “Inferring robust gene networks from expression data by a sensitivity-based incremental evolution method,” BMC Bioinformatics, vol. 13, article S8, 2012. View at Google Scholar
  284. P. C. Zuñiga, J. Pasia, H. Adorna, R. C. H. del Rosario, and P. Naval, “An ant colony optimization algorithm for parameter estimation and network inference problems in S-system models,” in Proceedings of the International Conference on Molecular Systems Biology 2008 (ICMSB '08), pp. 105–106, Manila, Philippines, 2008.
  285. P. C. C. Zuniga, “An ant colony optimization for the network inference and parameter estimation of S-Systems,” in Proceedings of the 3rd International Conference on BioMedical Engineering and Informatics (BMEI '10), pp. 2363–2367, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  286. O. R. Gonzalez, C. Küper, K. Jung, P. C. Naval, and E. Mendoza, “Parameter estimation using simulated annealing for S-system models of biochemical networks,” Bioinformatics, vol. 23, no. 4, pp. 480–486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  287. P. C. Naval, O. R. Gonzalez, E. Mendoza, and L. G. Sison, “Heuristic parameter estimation methods for S-system models of biochemical networks,” in Proceedings of the 2nd Humanoid, Nanotechnology, Information, Communication and Control, Environment and Management, IEEE-Philippine Section, Manila, Philippines, 2005.
  288. J. Sayol, L. Nolle, G. Schaefer, and T. Nakashima, “Comparison of simulated annealing and SASS for parameter estimation of biochemical networks,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '08), pp. 3568–3571, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  289. W. C. Yeh and T. J. Hsieh, “Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation,” Neural Computing and Applications, vol. 21, pp. 365–375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  290. R. C. H. del Rosario, M. T. Echavez, and M. T. de Paz, “MADMan: a benchmarking framework for parameter estimation in biochemical systems theory models,” in Proceedings of the International Conference on Molecular Systems Biology (ICMSB '08), pp. 10–13, Manila, Philippines, 2008.
  291. B. A. McKinney and D. Tian, “Grammatical immune system evolution for reverse engineering nonlinear dynamic Bayesian models,” Cancer Informatics, vol. 6, pp. 433–447, 2008. View at Google Scholar · View at Scopus
  292. W. P. Lee and K. C. Yang, “A clustering-based approach for inferring recurrent neural networks as gene regulatory networks,” Neurocomputing, vol. 71, no. 4–6, pp. 600–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  293. T. Johnson, “Estimating parameters of S-systems,” in Canonical Nonlinear Modeling: S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 200–216, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  294. S. Vinga, K. Thomaseth, J. M. Lemos, A. R. Neves, H. Santos, and A. T. Freitas, “Structural analysis of metabolic networks: a case study on Lactococcus lactis,” in Proceedings of the 8th Portuguese Conference on Automatic Control (CONTROLO '08), Lisbon: APCA-Associação Portuguesa de Controlo Automático, Vila Real, Portugal, 2008.
  295. N. Meskin, H. Nounou, M. Nounou, A. Datta, and E. R. Dougherty, “Parameter estimation of biological phenomenamodeled by S-systems: an extended Kalman filter approach,” in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC '11), Orlando, Fla, USA, 2011.
  296. J. S. Almeida and E. O. Voit, “Neural-network-based parameter estimation in S-system models of biological networks,” Genome Informatics, vol. 14, pp. 114–123, 2003. View at Google Scholar · View at Scopus
  297. H. Murata, M. Koshino, M. Mitamura, and H. Kimura, “Inference of S-system models of genetic networks using product unit neural networks,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '08), pp. 1390–1395, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  298. W. Tucker, Z. Kutalik, and V. Moulton, “Estimating parameters for generalized mass action models using constraint propagation,” Mathematical Biosciences, vol. 208, no. 2, pp. 607–620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  299. W. Tucker and V. Moulton, “Reconstructing metabolic networks using interval analysis,” in Proceedings of the 5th International Workshop on Algorithms in Bioinformatics (WABI '05), pp. 192–203, Springer, Berlin, Germany, 2005.
  300. W. Tucker and V. Moulton, “Parameter reconstruction for biochemical networks using interval analysis,” Reliable Computing, vol. 12, no. 5, pp. 389–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  301. Z. Kutalik, K. H. Cho, and O. Wolkenhauer, “Optimal sampling time selection for parameter estimation in dynamic pathway modeling,” BioSystems, vol. 75, no. 1–3, pp. 43–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  302. Z. Kutalik, W. Tucker, and V. Moulton, “S-system parameter estimation for noisy metabolic profiles using Newton-flow analysis,” IET Systems Biology, vol. 1, no. 3, pp. 174–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  303. I. C. Chou, H. Martens, and E. O. Voit, “Parameter estimation in biochemical systems models with alternating regression,” Theoretical Biology and Medical Modelling, vol. 3, article 25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  304. I. C. Chou, H. Martens, and E. O. Voit, “Parameter estimation of S-distributions with alternating regression,” Statistics and Operations Research transactions, vol. 31, no. 1, pp. 55–74, 2007. View at Google Scholar · View at Scopus
  305. L. Mu, Parameter estimation methods for biological systems [M.S. thesis], University of Saskatchewan, 2010.
  306. L. P. Tian, L. Mu, and F. X. Wu, “Alternating constraint least squares parameter estimation for S-system models of biological networks,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '10), June 2010. View at Publisher · View at Google Scholar · View at Scopus
  307. R. Lall, A. Rutes, H. Santos, J. S. Almeida, and E. O. Voit, “A new approach to parameter estimation using S-systems: modeling the glycolytic pathway of Lactococcus lactis,” in Proceedings of the 4th Georgia Tech-UGA Conference on Bioinformatics, Atlanta, Ga, USA, 2003.
  308. R. Lall and E. O. Voit, “Parameter estimation in modulated, unbranched reaction chains within biochemical systems,” Computational Biology and Chemistry, vol. 29, no. 5, pp. 309–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  309. S. F. Chen, Y. L. Juang, W. K. Chou et al., “Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis,” BMC Systems Biology, vol. 3, article 110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  310. F. S. Wang, T. L. Su, and H. J. Jang, “Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process,” Industrial and Engineering Chemistry Research, vol. 40, no. 13, pp. 2876–2885, 2001. View at Google Scholar · View at Scopus
  311. K. Y. Tsai and F. S. Wang, “Evolutionary optimization with data collocation for reverse engineering of biological networks,” Bioinformatics, vol. 21, no. 7, pp. 1180–1188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  312. F. S. Wang, “A modified collocation method for solving differential-algebraic equations,” Applied Mathematics and Computation, vol. 116, no. 3, pp. 257–278, 2000. View at Google Scholar · View at Scopus
  313. F. S. Wang and P.-K. Liu, “Inverse problems of biochemical systems using hybrid differential evolution and data collocation,” Journal of Systems and Synthetic Biology, vol. 1, pp. 21–38, 2010. View at Google Scholar
  314. W. H. Huang, C. H. Yuh, and F. S. Wang, “Reverse engineering for embryonic gene regulatory network in zebrafish via evolutionary optimization with data collocation,” in Proceedings of the 7th International Conference on Systems Biology, Yokohama, Japan, 2006.
  315. P. K. Liu and F. S. Wang, “Inference of biochemical network models in S-system using multiobjective optimization approach,” Bioinformatics, vol. 24, no. 8, pp. 1085–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  316. P. K. Liu and F. S. Wang, “Inverse problems of biological systems using multi-objective optimization,” Journal of the Chinese Institute of Chemical Engineers, vol. 39, no. 5, pp. 399–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  317. S. J. Wu, C. T. Wu, and J. Y. Chang, “Fuzzy-based self-interactive multi-objective evolution optimization for reverse engineering of biological networks,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 865–882, 2012. View at Google Scholar
  318. W.-H. Wu, F. S. Wang, and M.-S. Chang, “Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects,” BMC Systems Biology, vol. 5, article 145, 2011. View at Google Scholar
  319. P. K. Polisetty, E. O. Voit, and E. P. Gatzke, “Identification of metabolic system parameters using global optimization methods,” Theoretical Biology and Medical Modelling, vol. 3, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  320. C. Pozo, G. Guillén-Gosálbez, A. Sorribas, and L. Jiménez, “A spatial branch-and-bound framework for the global optimization of kinetic models of metabolic networks,” Industrial and Engineering Chemistry Research, vol. 50, no. 9, pp. 5225–5238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  321. S. Ando, E. Sakamoto, and H. Iba, “Evolutionary modeling and inference of gene network,” Information Sciences, vol. 145, no. 3-4, pp. 237–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  322. W. Yin and E. O. Voit, “Function and design of the Nox1 system in vascular smooth muscle cells,” submitted.
  323. Y. Lee, F. Chen, L. Gallego-Giraldo, R. A. Dixon, and E. O. Voit, “Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis,” PLoS Computational Biology, vol. 7, no. 5, Article ID e1002047, 2011. View at Publisher · View at Google Scholar · View at Scopus
  324. S. Y. Ho, C. H. Hsieh, F. C. Yu, and H. L. Huang, “An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 4, pp. 648–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  325. G. Jia, G. N. Stephanopoulos, and R. Gunawan, “Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method,” Bioinformatics, vol. 27, no. 14, pp. 1964–1970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  326. F. X. Wu and L. Mu, “Separable parameter estimation method for nonlinear biological systems,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE '09), pp. 1–4, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  327. M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke, “Gene regulatory network inference: data integration in dynamic models-A review,” BioSystems, vol. 96, no. 1, pp. 86–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  328. F. Mao, H. Wu, P. Dam, I.-C. Chou, E. O. Voit, and Y. Xu, “Prediction of biological pathways through data mining and information fusion,” in Computational Methods for Understanding Bacterial and Archaeal Genomes, Y. Xu and J. P. Gogarten, Eds., vol. 7, Imperial College Press, London, UK, 2008. View at Google Scholar
  329. R. Thomas, S. Mehrotra, E. T. Papoutsakis, and V. Hatzimanikatis, “A model-based optimization framework for the inference on gene regulatory networks from DNA array data,” Bioinformatics, vol. 20, no. 17, pp. 3221–3235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  330. R. Thomas, C. J. Paredes, S. Mehrotra, V. Hatzimanikatis, and E. T. Papoutsakis, “A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data,” BMC Bioinformatics, vol. 8, article 228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  331. P. Lecca, A. Palmisano, A. Ihekwaba, and C. Priami, “Calibration of dynamic models of biological systems with KInfer,” European Biophysics Journal, vol. 39, no. 6, pp. 1019–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  332. C. L. Ko, E. O. Voit, and F. S. Wang, “Estimating parameters for generalized mass action models with connectivity information,” BMC Bioinformatics, vol. 10, article 140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  333. M. T. A. P. Kresnowati, W. A. Van Winden, and J. J. Heijnen, “Determination of elasticities, concentration and flux control coefficients from transient metabolite data using linlog kinetics,” Metabolic Engineering, vol. 7, no. 2, pp. 142–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  334. D. Calçada, S. Vinga, A. T. Freitas, and A. L. Oliveira, “Quantitative modeling of the Saccharomyces cerevisiae FLR1 regulatory network using an S-system formalism,” Journal of Bioinformatics and Computational Biology, vol. 9, pp. 613–630, 2011. View at Google Scholar
  335. C. Seatzu, “A parameter estimation method for a special class of systems of ordinary differential equations,” in Proceedings of the 7th Mediterranean Conference on Control and Automation (MED '99), Haifa, Israel, 1999.
  336. C. Seatzu, “A fitting based method for parameter estimation in S-systems,” Dynamic Systems and Applications, vol. 9, pp. 77–98, 2000. View at Google Scholar
  337. M. Vilela, C. C. H. Borges, S. Vinga et al., “Automated smoother for the numerical decoupling of dynamics models,” BMC Bioinformatics, vol. 8, article 305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  338. M. Vilela, I. C. Chou, S. Vinga, A. T. R. Vasconcelos, E. O. Voit, and J. S. Almeida, “Parameter optimization in S-system models,” BMC Systems Biology, vol. 2, article 35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  339. H. Wang, J. E. Glover, and L. Qian, “A comparative study of the time-series data for inference of gene regulatory networks using B-spline,” in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '10), pp. 32–36, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  340. M. N. Nounou, H. N. Nounou, N. Meskin, A. Datta, and E. R. Dougherty, “Multiscale denoising of biological data: A comparative analysis,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, pp. 1539–1544, 2012. View at Google Scholar
  341. S. R. Veflingstad, J. Almeida, and E. O. Voit, “Priming nonlinear searches for pathway identification,” Theoretical Biology and Medical Modelling, vol. 1, article 8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  342. S. Srinath and R. Gunawan, “Parameter identifiability of power-law biochemical system models,” Journal of Biotechnology, vol. 149, no. 3, pp. 132–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  343. R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna, “Universally sloppy parameter sensitivities in systems biology models,” PLoS Computational Biology, vol. 3, no. 10, pp. 1871–1878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  344. M. Vilela, S. Vinga, M. A. G. M. Maia, E. O. Voit, and J. S. Almeida, “Identification of neutral biochemical network models from time series data,” BMC Systems Biology, vol. 3, article 47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  345. V. Hatzimanikatis, C. A. Floudas, and J. E. Bailey, “Optimization of regulatory architectures in metabolic reaction networks,” Biotechnology and Bioengineering, vol. 52, pp. 485–500, 1996. View at Google Scholar
  346. V. Hatzimanikatis, C. A. Floudas, and J. E. Bailey, “Analysis and design of metabolic reaction networks via mixed-integer linear optimization,” AIChE Journal, vol. 42, no. 5, pp. 1277–1290, 1996. View at Google Scholar · View at Scopus
  347. M. Khoury, F. Guerin, and G. M. Coghill, “Learning dynamic models of compartment systems by combining symbolic regression with fuzzy vector envisionment,” in Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference (GECCO '07), pp. 2769–2776, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  348. C. Spieth, F. Streichert, N. Speer, and A. Zell, “Optimizing topology and parameters of gene regulatory tetwork models from time-series experiments,” in Proceedings of the Genetic and Evolutionary Computation (GECCO '04), vol. 3102 of Lecture Notes in Computer Science, pp. 461–470, 2004.
  349. C. Spieth, F. Streichert, N. Speer, and A. Zell, “A memetic inference method for gene regulatory networks based on S-systems,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 152–157, usa, June 2004. View at Scopus
  350. C. Spieth, F. Streichert, N. Speer, and A. Zell, “Iteratively inferring gene regulatory networks with virtual knockout experiments,” in Proceedings of the 2nd European Workshop on Evolutionary Bioinformatics, vol. 3005 of Lecture Notes in Computer Science, pp. 104–112, 2004.
  351. C. Spieth, F. Streichert, N. Speer, and A. Zell, “Utilizing an Island model for EA to preserve solution diversity for inferring gene regulatory networks,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 146–151, June 2004. View at Scopus
  352. C. Spieth, F. Streichelt, N. Speer, and A. Zell, “Multi-objective model optimization for inferring gene regulatory networks,” in Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO '05), pp. 607–620, March 2005. View at Scopus
  353. C. Spieth, F. Streichert, J. Supper, N. Speer, and A. Zell, “Feedback memetic algorithms for modeling gene regulatory networks,” in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '05), November 2005. View at Scopus
  354. A. R. Chowdhury, M. Chetty, and N. X. Vinh, “Adaptive regulatory genes cardinality for reconstructing genetic networks,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '12), pp. 1–8, 2012.
  355. S. J. Galbraith, L. M. Tran, and J. C. Liao, “Transcriptome network component analysis with limited microarray data,” Bioinformatics, vol. 22, no. 15, pp. 1886–1894, 2006. View at Publisher · View at Google Scholar · View at Scopus
  356. L. Z. Liu, F. X. Wu, L. L. Han, and W. J. Zhang, “Structure identification and parameter estimation of biological s-systems,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2'010), pp. 329–334, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  357. E. O. Voit, J. Almeida, S. Marino et al., “Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study,” IEE Proceedings, vol. 153, no. 4, pp. 286–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  358. J. Srividhya, E. J. Crampin, P. E. McSharry, and S. Schnell, “Reconstructing biochemical pathways from time course data,” Proteomics, vol. 7, no. 6, pp. 828–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  359. S. J. Horne, D. P. Searson, M. J. Willis, and A. R. Wright, “Modelling of chemical processes using S-systems,” in Proceedings of the 11th APCChe Congress, p. 335, Kuala Lumpur, 2006.
  360. D. P. Searson, M. J. Willis, S. J. Horne, and A. R. Wright, “Inference of chemical reaction networks using hybrid S-system models,” Chemical Product and Process Modeling, vol. 2, no. 1, article 10, 2007. View at Google Scholar · View at Scopus
  361. G. D. Kattas, P. Gennemark, and D. Wedelin, “Structural identification of GMA models: algorithm and model comparison,” in Proceedings of the 8th International Conference on Computational Methods in Systems Biology (CMSB '10), pp. 107–113, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  362. G. Goel, I. C. Chou, and E. O. Voit, “System estimation from metabolic time-series data,” Bioinformatics, vol. 24, no. 21, pp. 2505–2511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  363. E. O. Voit, G. Goel, I. C. Chou, and L. L. Fonseca, “Estimation of metabolic pathway systems from different data sources,” IET Systems Biology, vol. 3, no. 6, pp. 513–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  364. I.-C. Chou and E. O. Voit, “Estimation of dynamic flux profiles from metabolic time series data,” BMC Systems Biology, vol. 6, article 84, 2012. View at Google Scholar
  365. S. Dolatshahi and E. Voit, “Identifiation of dynamic fluxes from metabolic time series data,” submitted.
  366. E. O. Voit, “Characterizability of metabolic pathway systems from time series data,” Math. Biosci. In press.
  367. J. Ndukum, L. L. Fonseca, H. Santos, E. O. Voit, and S. Datta, “Statistical inference methods for sparse biological time series data,” BMC Systems Biology, vol. 5, article 57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  368. K. Kawagoe, T. Bernecker, H. P. Kriegel, M. Renz, A. Zimek, and A. Züfle, “Similarity search in time series of dynamical model-based systems,” in Proceedings of the 21st International Workshop on Database and Expert Systems Applications (DEXA '10), pp. 110–114, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  369. N. F. Lages, C. Cordeiro, M. Sousa Silva, A. Ponces Freire, and A. E. Ferreira, “Optimization of time-course experiments for kinetic model discrimination,” PloS ONE, vol. 7, Article ID e32749, 2012. View at Google Scholar
  370. T. C. Ni and M. A. Savageau, “Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells,” Journal of Theoretical Biology, vol. 179, no. 4, pp. 329–354, 1996. View at Publisher · View at Google Scholar · View at Scopus
  371. T. C. Ni and M. A. Savageau, “Application of biochemical systems theory to metabolism in human red blood cells: signal propagation and accuracy of representation,” Journal of Biological Chemistry, vol. 271, no. 14, pp. 7927–7941, 1996. View at Google Scholar · View at Scopus
  372. T.-C. Ni and M. A. Savageau, “Scanning algorithm for refinement of complex biological models,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., pp. 147–150, World Scientific, Singapore, 1996. View at Google Scholar
  373. R. Alves, E. Herrero, and A. Sorribas, “Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism—II—role of glutaredoxin Grx5,” Proteins: Structure, Function and Genetics, vol. 57, no. 3, pp. 481–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  374. R. Alves, E. Herrero, and A. Sorribas, “Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism—I—the role of the protein pair ferredoxin-ferredoxin reductase (Yah1-Arh1),” Proteins, vol. 56, no. 2, pp. 354–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  375. J. Němcová, Rational systems in control and system theory [Doctoral dissertation], Vrije Universiteit Amsterdam, 2009.
  376. J. Němcová, “Structural identifiability of polynomial and rational systems,” Mathematical Biosciences, vol. 223, no. 2, pp. 83–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  377. M. Shiota, Nash Manifolds, Springer, New York, NY, USA, 1987.
  378. A. Papachristodoulou and B. Recht, “Determining interconnections in chemical reaction networks,” in Proceedings of the American Control Conference (ACC '07), pp. 4872–4877, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  379. E. O. Voit, “A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view,” Mathematical Biosciences, vol. 217, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  380. Y. Lee, P. W. Chen, and E. O. Voit, “Analysis of operating principles with S-system models,” Mathematical Biosciences, vol. 231, no. 1, pp. 49–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  381. L. Tournier, “Approximation of dynamical systems using S-systems theory: application to biological systems,” in Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 317–324, July 2005. View at Scopus
  382. T. Hasegawa, H. Takatani, and J. Yoshimura, “Application of power-law formalism method to equilibrium computation of vapor growth epitaxy,” Journal of Chemical Engineering of Japan, vol. 32, no. 4, pp. 506–513, 1999. View at Google Scholar · View at Scopus
  383. T. Hasegawa, F. Shiraishi, and H. Nagasue, “Numerical tests for usefulness of power-law formalism method in parameter optimization problem of immobilized enzyme reaction,” Journal of Chemical Engineering of Japan, vol. 33, no. 2, pp. 197–204, 2000. View at Google Scholar · View at Scopus
  384. C. L. Lin, Y. W. Liu, and C. H. Chuang, “Control design for signal transduction networks,” Bioinformatics and Biology Insights, vol. 2009, no. 3, pp. 1–14, 2009. View at Google Scholar · View at Scopus
  385. M. A. Savageau, “Alternative designs for a genetic switch: analysis of switching times using the piecewise power-law representation,” Mathematical Biosciences, vol. 180, pp. 237–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  386. E. O. Voit, “Smooth bistable S-systems,” IEE Proceedings Systems Biology, vol. 152, no. 4, pp. 207–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  387. O. A. Igoshin, C. W. Price, and M. A. Savageau, “Signalling network with a bistable hysteretic switch controls developmental activation of the σF transcription factor in Bacillus subtilis,” Molecular Microbiology, vol. 61, no. 1, pp. 165–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  388. O. A. Igoshin, M. S. Brody, C. W. Price, and M. A. Savageau, “Distinctive topologies of partner-switching signaling networks correlate with their physiological roles,” Journal of Molecular Biology, vol. 369, no. 5, pp. 1333–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  389. O. A. Igoshin, R. Alves, and M. A. Savageau, “Hysteretic and graded responses in bacterial two-component signal transduction,” Molecular Microbiology, vol. 68, no. 5, pp. 1196–1215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  390. B. Salvado, E. Vilaprinyo, H. Karathia, A. Sorribas, and R. Alves, “Two component systems: physiological effect of a third component,” PloS ONE, vol. 7, Article ID e31095, 2012. View at Google Scholar
  391. M. A. Savageau, “Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems,” Nature, vol. 229, no. 5286, pp. 542–544, 1971. View at Publisher · View at Google Scholar · View at Scopus
  392. M. Cascante, R. Franco, and E. Canela, “Sensitivity analysis: a common foundation of theories for the quantitative study of metabolic control,” in Canonical Nonlinear Modeling: S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 76–89, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  393. A. Salvador, “Steady-state synergisms in kinetic models: estimation and applications,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., pp. 143–146, World Scientific, Singapore, 1996. View at Google Scholar
  394. A. Salvador, Development of methodology and software for analysis of kinetic models of metabolic processes. Application to the mitochondrial metabolism of lipid hydroperoxides [Doctoral thesis], Lisbon, Portugal, 1997.
  395. A. Salvador, “Synergism analysis of biochemical systems—II. Tensor formulation and treatment of stoichiometric constraints,” Mathematical Biosciences, vol. 163, no. 2, pp. 131–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  396. A. Salvador, “Synergism analysis of biochemical systems—I. Conceptual framework,” Mathematical Biosciences, vol. 163, no. 2, pp. 105–129, 2000. View at Publisher · View at Google Scholar · View at Scopus
  397. D. V. Guebel, “Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling,” In Silico Biology, vol. 4, no. 2, pp. 163–182, 2004. View at Google Scholar · View at Scopus
  398. B. S. Chen, Y. C. Wang, W. S. Wu, and W. H. Li, “A new measure of the robustness of biochemical networks,” Bioinformatics, vol. 21, no. 11, pp. 2698–2705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  399. B. S. Chen and Y. C. Wang, “On the attenuation and amplification of molecular noise in genetic regulatory netwoks,” BMC Bioinformatics, vol. 7, article 52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  400. B. S. Chen and W. S. Wu, “Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises,” Mathematical Biosciences, vol. 211, no. 2, pp. 342–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  401. B. S. Chen, W. S. Wu, Y. C. Wang, and W. H. Li, “On the robust circuit design schemes of biochemical networks: steady-state approach,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 2, pp. 91–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  402. B.-S. Chen, W.-S. Wu, W.-S. Wu, and W.-H. Li, “On the adaptive design rules of biochemical networks in evolution,” Evolutionary Bioinformatics, no. 3, pp. 27–29, 2007. View at Google Scholar
  403. L. Ma and P. A. Iglesias, “Quantifying robustness of biochemical network models,” BMC Bioinformatics, vol. 3, article 38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  404. B. S. Chen, Y. T. Chang, and Y. C. Wang, “Robust H-stabilization design in gene networks under stochastic molecular noises: fuzzy-interpolation approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 1, pp. 25–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  405. B. S. Chen and C. W. Li, “On the interplay between entropy and robustness of gene regulatory networks,” Entropy, vol. 12, no. 5, pp. 1071–1101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  406. M.-G. Shi, M. R. Lyu, and T.-M. Lok, “Maximal-robustness-minimal-fragility controller: a compromise between robustness and fragility of biochemical networks,” in Proceedings of the Advanced Intelligent Computing Theories and Applications, D.-S. Huang, Ed., vol. 5227 of Lecture Notes in Computer Science, pp. 1012–1021, Springer, Heidelberg, Germany, 2008.
  407. W. H. Wu, F. S. Wang, and M. S. Chang, “Dynamic sensitivity analysis of biological systems,” BMC Bioinformatics, vol. 9, no. 12, article S17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  408. F. Shiraishi and Y. Hatoh, “Dynamic sensitivities in chaotic dynamical systems,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1347–1359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  409. K. Sriyudthsak and F. Shiraishi, “Identification of bottleneck enzymes with negative dynamic sensitivities: ethanol fermentation systems as case studies,” Journal of Biotechnology, vol. 149, no. 3, pp. 191–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  410. F. Shiraishi and Y. Suzuki, “Method for determination of the main bottleneck enzyme in a metabolic reaction network by dynamic sensitivity analysis,” Industrial and Engineering Chemistry Research, vol. 48, no. 1, pp. 415–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  411. K. Sriyudthsak and F. Shiraishi, “Instantaneous and overall indicators for determination of bottleneck ranking in metabolic reaction networks,” Industrial and Engineering Chemistry Research, vol. 49, no. 5, pp. 2122–2129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  412. M. L. Chen and F. S. Wang, “Dynamic sensitivity analysis of oscillating biochemical systems using modified collocation method,” Journal of the Taiwan Institute of Chemical Engineers, vol. 40, no. 4, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  413. J. K. Horner, “Sensitivity of blood serum uric acid concentration in HGPRT deficiency to initial conditions of the purine metabolism pathway,” in Proceedings of the International Conference on Scientific Computing, pp. 261–267, CSREA Press, Las Vegas, Nev, USA, 2012.
  414. T. Drengstig, T. Kjosmoen, and P. Ruoff, “On the relationship between sensitivity coeffcients and transfer functions of reaction kinetic networks,” Journal of Physical Chemistry B, vol. 115, no. 19, pp. 6272–6278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  415. V. Weinberger, “Symbolic analysis of S-systems with MACSYMA,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 110–132, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  416. E. Hopf, “Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems,” Berichte der Mathematisch-Physikalischen Klasse der Sächsischen Akademie, vol. 94, pp. 1–22, 1942. View at Google Scholar
  417. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, NY, USA, 1990.
  418. D. C. Lewis, “A qualitative analysis of S-systems: Hopf bifurcations,” in Canonical Nonlinear Modeling: S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 304–344, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  419. W. Yin and E. O. Voit, “Construction and customization of stable oscillation models in biology,” Journal of Biological Systems, vol. 16, no. 4, pp. 463–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  420. J. J. Tyson, “Some further studies of nonlinear oscillations in chemical systems,” The Journal of Chemical Physics, vol. 58, no. 9, pp. 3919–3930, 1973. View at Google Scholar · View at Scopus
  421. M. S. Morrison, “Recasting as a modeling tool,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. Voit, Ed., pp. 258–277, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  422. S. Nikolov, X. Lai, U. W. Liebal, O. Wolkenhauer, and J. Vera, “Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics,” International Journal of Systems Science, vol. 41, no. 1, pp. 81–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  423. E. O. Voit and M. A. Savageau, “Analytical solutions to a generalized growth equation,” Journal of Mathematical Analysis and Applications, vol. 103, no. 2, pp. 380–386, 1984. View at Google Scholar · View at Scopus
  424. E. O. Voit, “Hierarchical Monte Carlo modeling with S-distributions: concepts and illustrative analysis of mercury contamination in king mackerel,” Environment International, vol. 21, no. 5, pp. 627–635, 1995. View at Publisher · View at Google Scholar · View at Scopus
  425. M. Cascante, R. Curto, and A. Sorribas, “Testing the robustness of the steady-state characteristics of a metabolic pathway: parameter sensitivity as a basic feature for model validation,” Journal of Biological Systems, vol. 3, pp. 105–113, 1995. View at Google Scholar
  426. F. Alvarez-Vasquez, K. J. Sims, L. A. Cowart, Y. Okamoto, E. O. Voit, and Y. A. Hannun, “Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae,” Nature, vol. 433, no. 7024, pp. 425–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  427. B. Mishra, “A symbolic approach to modeling cellular behavior,” in Proceedings of the High Performance Computing (HIPC '02), vol. 2552, pp. 725–732, Springer, 2002.
  428. B. Mishra, V. Cherepinsky, N. Silver et al., “A sense of life: computational and experimental investigations with models of biochemical and evolutionary processes,” OMICS, vol. 7, no. 3, pp. 253–268, 2003. View at Google Scholar · View at Scopus
  429. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra, “XS-systems: eXtended S-systems and algebraic differential automata for modeling cellular behavior,” in Proceedings of the High performane computing (HIPC '02), vol. 2552 of Lecture Notes in Computer Science, pp. 431–442, 2002.
  430. M. Antoniotti, F. Park, A. Policriti, N. Ugel, and B. Mishra, “Foundations of a query and simulation system for the modeling of biochemical and biological processes,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 116–127, 2003. View at Google Scholar · View at Scopus
  431. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra, “Model building and model checking for biochemical processes,” Cell Biochemistry and Biophysics, vol. 38, no. 3, pp. 271–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  432. M. Antoniotti, C. Piazza, A. Policriti, M. Simeoni, and B. Mishra, “Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice,” Theoretical Computer Science, vol. 325, no. 1, pp. 45–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  433. B. Mishra, M. Antoniotti, S. Paxia, and N. Ugel, “Simpathica: a computational systems biology tool within the valis bioinformatics environment,” in Computational Systems Biology, A. Kriete and R. Eils, Eds., pp. 79–102, Elsevier Academic Press, 2006. View at Google Scholar
  434. B. Mishra, “Algebraic systems biology: theses and hypotheses,” in Proceedings of the Algebraic Biology, H. Anai, K. Horimoto, and T. Kutsia, Eds., vol. 4545 of Lecture Notes in Computer Science, pp. 1–14, Springer, Berlin, Germany, 2007.
  435. B. Mishra, “Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology,” Journal of the Royal Society Interface, vol. 6, no. 36, pp. 575–597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  436. M. Antoniotti, B. Mishra, C. Piazza, A. Policriti, and M. Simeoni, “Modeling cellular behavior with hybrid automata: bisimulation and collapsing,” in Proceedings of the Computational Methods in Systems Biology, vol. 2602 of Lecture Notes in Computer Science, pp. 57–74, 2003.
  437. M. B. Elowitz and S. Leibier, “A synthetic oscillatory network of transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  438. R. Curto, E. O. Voit, and M. Cascante, “Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man,” Biochemical Journal, vol. 329, no. 3, pp. 477–487, 1998. View at Google Scholar · View at Scopus
  439. R. Curto, E. O. Voit, A. Sorribas, and M. Cascante, “Validation and steady-state analysis of a power-law model of purine metabolism in man,” Biochemical Journal, vol. 324, no. 3, pp. 761–775, 1997. View at Google Scholar · View at Scopus
  440. R. Gentilini, “Toward integration of systems biology formalism: the gene regulatory networks case,” Genome Informatics, vol. 16, no. 2, pp. 215–224, 2005. View at Google Scholar · View at Scopus
  441. D. Campagna and C. Piazza, “Hybrid automata in systems biology: how far can we go?” Electronic Notes in Theoretical Computer Science, vol. 229, no. 1, pp. 93–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  442. M. A. Savageau, “Comparison of classical and autogenous systems of regulation in inducible operons,” Nature, vol. 252, no. 5484, pp. 546–549, 1974. View at Google Scholar · View at Scopus
  443. M. A. Savageau, “Autogenous and classical regulation of gene expression: a general theory and experimental evidence,” in Biological Regulation and Development, R. F. Goldberger, P. Berg, R. T. Schimke, K. Moldave, P. Leder, and L. E. Hood, Eds., vol. 1, pp. 57–108, Plenum, New York, NY, USA, 1979. View at Google Scholar
  444. M. A. Savageau, “Genetic regulatory mechanisms and the ecological niche of Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 6, pp. 2453–2455, 1974. View at Google Scholar · View at Scopus
  445. M. A. Savageau, “Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems,” Nature, vol. 258, no. 5532, pp. 208–214, 1975. View at Google Scholar · View at Scopus
  446. M. A. Savageau, “Design of molecular control mechanisms and the demand for gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5647–5651, 1977. View at Google Scholar · View at Scopus
  447. M. A. Savageau, “Escherichia coli habitats, cell types, and molecular mechanisms of gene control,” American Naturalist, vol. 122, no. 6, pp. 732–744, 1983. View at Publisher · View at Google Scholar · View at Scopus
  448. M. A. Savageau, “Models of gene function: general methods of kinetic analysis and specific ecological correlates,” in Foundations of Biochemical Engineering Kinetics and Thermodynamics in Biological Systems, H. W. Blanch, E. T. Papoutsakis, and G. N. Stephanopoulos, Eds., pp. 3–25, American Chemical Society, Washington, DC, USA, 1983. View at Google Scholar
  449. M. A. Savageau and P. J. Sands, “Completely uncoupled and perfectly coupled circuits for inducible gene regulation,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 145–165, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  450. M. A. Savageau, “Rules for the evolution of gene circuitry,” in Proceedings of the Pacific Symposium on Biocomputing, pp. 54–65, 1998.
  451. M. A. Savageau, “Design of gene circuitry by natural selection: analysis of the lactose catabolic system in Escherichia coli,” Biochemical Society Transactions, vol. 27, no. 2, pp. 264–270, 1999. View at Google Scholar · View at Scopus
  452. M. A. Savageau, “Regulation of gene expression: new theory and the experimental evidence,” Zagadnienia Biofizyki Wsopolczesnej, vol. 4, pp. 129–143, 1979. View at Google Scholar
  453. M. A. Savageau, “Design of the lac gene circuit revisited,” Mathematical Biosciences, vol. 231, no. 1, pp. 19–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  454. M. A. Savageau and A. Sorribas, “Constraints among molecular and systemic properties: implications for physiological genetics,” Journal of Theoretical Biology, vol. 141, no. 1, pp. 93–115, 1989. View at Google Scholar · View at Scopus
  455. W. S. Hlavecek and M. A. Savageau, “Subunit structure of regulator proteins influences the design of gene circuitry: analysis of perfectly coupled and completely uncoupled circuits,” Journal of Molecular Biology, vol. 248, no. 4, pp. 739–755, 1995. View at Publisher · View at Google Scholar · View at Scopus
  456. W. S. Hlavacek and M. A. Savageau, “Rules for coupled expression of regulator and effector genes in inducible circuits,” Journal of Molecular Biology, vol. 255, no. 1, pp. 121–139, 1996. View at Publisher · View at Google Scholar · View at Scopus
  457. W. S. Hlavacek and M. A. Savageau, “Completely uncoupled and perfectly coupled gene expression in repressible systems,” Journal of Molecular Biology, vol. 266, no. 3, pp. 538–558, 1997. View at Publisher · View at Google Scholar · View at Scopus
  458. W. S. Hlavacek and M. A. Savageau, “Comparison of completely uncoupled and perfectly coupled gene expression in repressible biosynthetic systems,” in Methodologies for the Conception, Design, amd Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., vol. 1, pp. 167–170, World Scientific, Singapore, 1996. View at Google Scholar
  459. W. S. Hlavacek and M. A. Savageau, “Method for determining natural design principles of biological control circuits,” Journal of Intelligent and Fuzzy Systems, vol. 6, no. 1, pp. 147–160, 1998. View at Google Scholar · View at Scopus
  460. M. E. Wall, W. S. Hlavacek, and M. A. Savageau, “Design principles for regulator gene expression in a repressible gene circuit,” Journal of Molecular Biology, vol. 332, no. 4, pp. 861–876, 2003. View at Publisher · View at Google Scholar · View at Scopus
  461. M. E. Wall, W. S. Hlavacek, and M. A. Savageau, “Design of gene circuits: lessons from bacteria,” Nature Reviews Genetics, vol. 5, no. 1, pp. 34–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  462. D. H. Irvine and M. A. Savageau, “Network regulation of the immune response: modulation of suppressor lymphocytes by alternative signals including contrasuppression,” Journal of Immunology, vol. 134, no. 4, pp. 2117–2130, 1985. View at Google Scholar · View at Scopus
  463. D. H. Irvine and M. A. Savageau, “Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes,” Journal of Immunology, vol. 134, no. 4, pp. 2100–2116, 1985. View at Google Scholar · View at Scopus
  464. J. H. Schwacke and E. O. Voit, “Improved methods for the mathematically controlled comparison of biochemical systems,” Theoretical Biology and Medical Modelling, vol. 1, article 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  465. M. A. Savageau, “Regulation of differentiated cell-specific functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 5 I, pp. 1411–1415, 1983. View at Google Scholar · View at Scopus
  466. M. R. Atkinson, M. A. Savageau, J. T. Myers, and A. J. Ninfa, “Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli,” Cell, vol. 113, no. 5, pp. 597–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  467. M. A. Savageau, “Optimal design of feedback control by inhibition. Steady state considerations,” Journal of Molecular Evolution, vol. 4, no. 2, pp. 139–156, 1974. View at Google Scholar · View at Scopus
  468. M. A. Savageau, “Optimal design of feedback control by inhibition: dynamic considerations,” Journal of Molecular Evolution, vol. 5, no. 3, pp. 199–222, 1975. View at Google Scholar · View at Scopus
  469. M. A. Savageau, “Feedforward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by the penultimate product,” Journal of Theoretical Biology, vol. 77, no. 4, pp. 385–404, 1979. View at Google Scholar · View at Scopus
  470. M. A. Savageau and G. Jacknow, “Feedforward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway,” Journal of Theoretical Biology, vol. 77, no. 4, pp. 405–425, 1979. View at Google Scholar · View at Scopus
  471. R. Alves and M. A. Savageau, “Effect of overall feedback inhibition in unbranched biosynthetic pathways,” Biophysical Journal, vol. 79, no. 5, pp. 2290–2304, 2000. View at Google Scholar · View at Scopus
  472. R. Alves and M. A. Savageau, “Systemic properties of ensembles of metabolic networks: application of graphical and statistical methods to simple unbranched pathways,” Bioinformatics, vol. 16, no. 6, pp. 534–547, 2000. View at Google Scholar · View at Scopus
  473. R. Alves and M. A. Savageau, “Comparing systemic properties of ensembles of biological networks by graphical and statistical methods,” Bioinformatics, vol. 16, no. 6, pp. 527–533, 2000. View at Google Scholar · View at Scopus
  474. R. Alves and M. A. Savageau, “Irreversibility in unbranched pathways: preferred positions based on regulatory considerations,” Biophysical Journal, vol. 80, no. 3, pp. 1174–1185, 2001. View at Google Scholar · View at Scopus
  475. R. Alves and M. A. Savageau, “Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function,” Molecular Microbiology, vol. 48, no. 1, pp. 25–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  476. R. Alves and M. A. Savageau, “Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes,” Molecular Microbiology, vol. 56, no. 4, pp. 1017–1034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  477. M. A. Savageau, “Evolution of regulation examined with a novel strategy for comparative optimization,” in Evolution and Optimization, H. M. Voigt, H. Mühlenbein, and H. P. Schwefel, Eds., pp. 9–30, Akademie, Berlin, Germany, 1990. View at Google Scholar
  478. A. Salvador and M. A. Savageau, “Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14463–14468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  479. A. Salvador and M. A. Savageau, “Evolution of enzymes in a series is driven by dissimilar functional demands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2226–2231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  480. P. M. B. M. Coelho, A. Salvador, and M. A. Savageau, “Quantifying global tolerance of biochemical systems: design implications for moiety-transfer cycles,” PLoS Computational Biology, vol. 5, no. 3, Article ID e1000319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  481. P. M. B. M. Coelho, A. Salvador, and M. A. Savageau, “Relating mutant genotype to phenotype via quantitative behavior of the NADPH redox cycle in human erythrocytes,” PLoS ONE, vol. 5, no. 9, Article ID e13031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  482. R. Alves, E. Vilaprinyo, A. Sorribas, and E. Herrero, “Evolution based on domain combinations: the case of glutaredoxins,” BMC Evolutionary Biology, vol. 9, no. 1, article 66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  483. B. Salvado, H. Karathia, A. U. Chimenos et al., “Methods for and results from the study of design principles in molecular systems,” Mathematical Biosciences, vol. 231, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  484. G. Guillén-Gosálbez and A. Sorribas, “Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses,” BMC Bioinformatics, vol. 10, article 386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  485. A. Martinez-Antonio, J. G. Lomnitz, S. Sandoval, M. Aldana, and M. A. Savageau, “Regulatory design governing progression of population growth phases in bacteria,” PloS ONE, vol. 7, Article ID e30654, 2012. View at Google Scholar
  486. E. O. Voit, “Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis,” Journal of Theoretical Biology, vol. 223, no. 1, pp. 55–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  487. Y. Lee, L. Escamilla-Treviño, R. A. Dixon, and E. O. Voit, “Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computationalapproach,” PLoS Computational Biology, vol. 8, no. 11.
  488. J. Puigjaner, M. Cascante, and A. Sorribas, “Assessing optimal designs in metabolic pathways,” Journal of Biological Systems, vol. 3, pp. 197–206, 1995. View at Google Scholar
  489. Q. Zhang, S. Bhattacharya, M. E. Andersen, and R. B. Conolly, “Computational systems biology and dose-response modeling in relation to new directions in toxicity testing,” Journal of Toxicology and Environmental Health Part B, vol. 13, no. 2–4, pp. 253–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  490. R. Alves and M. A. Savageau, “Extending the method of mathematically controlled comparison to include numerical comparisons,” Bioinformatics, vol. 16, no. 9, pp. 786–798, 2000. View at Google Scholar · View at Scopus
  491. M. A. Savageau, “Biomedical engineering strategies in system design space,” Annals of Biomedical Engineering, vol. 39, no. 4, pp. 1278–1295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  492. M. A. Savageau, P. M. B. M. Coelho, R. A. Fasani, D. A. Tolla, and A. Salvador, “Phenotypes and tolerances in the design space of biochemical systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6435–6440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  493. M. A. Savageau and R. A. Fasani, “Qualitatively distinct phenotypes in the design space of biochemical systems,” FEBS Letters, vol. 583, no. 24, pp. 3914–3922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  494. R. A. Fasani and M. A. Savageau, “Automated construction and analysis of the design space for biochemical systems,” Bioinformatics, vol. 26, no. 20, Article ID btq479, pp. 2601–2609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  495. D. A. Tolla and M. A. Savageau, “Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli,” Journal of Molecular Biology, vol. 397, no. 4, pp. 893–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  496. D. A. Tolla and M. A. Savageau, “Phenotypic repertoire of the FNR regulatory network in Escherichia coli,” Molecular Microbiology, vol. 79, no. 1, pp. 149–165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  497. B.-S. Chen and W.-S. Wu, “Underlying principles of natural selection in network evolution: systems biology approach,” Evolutionary Bioinformatics, vol. 3, pp. 245–262, 2007. View at Google Scholar
  498. R. Wu, J. Cao, Z. Huang, Z. Wang, J. Gai, and E. Vallejos, “Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems,” BMC Systems Biology, vol. 5, article 84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  499. M. A. Savageau, “Accuracy of proofreading with zero energy cost,” Journal of Theoretical Biology, vol. 93, no. 1, pp. 179–195, 1981. View at Google Scholar · View at Scopus
  500. M. A. Savageau and R. R. Freter, “On the evolution of accuracy and cost of proofreading tRNA aminoacylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4507–4510, 1979. View at Google Scholar · View at Scopus
  501. M. A. Savageau and R. R. Freter, “Energy cost of proofreading to increase fidelity of transfer ribonucleic acid aminoacylation,” Biochemistry, vol. 18, no. 16, pp. 3486–3493, 1979. View at Google Scholar · View at Scopus
  502. M. A. Savageau and D. S. Lapointe, “Optimization of kinetic proofreading: a general method for derivation of the constraint relations and an exploration of a specific case,” Journal of Theoretical Biology, vol. 93, no. 1, pp. 157–177, 1981. View at Google Scholar · View at Scopus
  503. R. R. Freter and M. A. Savageau, “Proofreading systems of multiple stages for improved accuracy of biological discrimination,” Journal of Theoretical Biology, vol. 85, no. 1, pp. 99–123, 1980. View at Google Scholar · View at Scopus
  504. M. Okamoto, J. J. Yoshii, and K. Hayasji, “GTP-dependent kinetic proofreading,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 166–180, Van Nostrand Reinhold, New York, NY, USA, 1991. View at Google Scholar
  505. M. Okamoto and M. A. Savageau, “Integrated function of a kinetic proofreading mechanism: dynamic analysis separating the effects of speed and substrate competition on accuracy,” Biochemistry, vol. 23, no. 8, pp. 1710–1715, 1984. View at Google Scholar · View at Scopus
  506. M. Okamoto and M. A. Savageau, “Integrated function of a kinetic proofreading mechanism: steady-state analysis testing internal consistency of data obtained in vivo and in vitro and predicting parameter values,” Biochemistry, vol. 23, no. 8, pp. 1701–1709, 1984. View at Google Scholar · View at Scopus
  507. M. Okamoto and M. A. Savageau, “Integrated function of a kinetic proofreading mechanism: double-stage proofreading by isoleucyl-tRNA synthetase,” Biochemistry, vol. 25, no. 8, pp. 1969–1975, 1986. View at Google Scholar · View at Scopus
  508. M. Cascante, R. Curto, and A. Sorribas, “Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: steady-state analysis,” Mathematical Biosciences, vol. 130, no. 1, pp. 51–69, 1995. View at Publisher · View at Google Scholar · View at Scopus
  509. M. Cascante, R. Curto, and A. Sorribas, “Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior,” Mathematical Biosciences, vol. 130, no. 1, pp. 71–84, 1995. View at Publisher · View at Google Scholar · View at Scopus
  510. F. Rodríguez-Acosta, C. M. Regalado, and N. V. Torres, “Non-linear optimization of biotechnological processes by stochastic algorithms. Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae,” Journal of Biotechnology, vol. 68, no. 1, pp. 15–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  511. N. V. Torres, E. O. Voit, C. Glez-Alcón, and F. Rodríguez, “An indirect optimization method for biochemical systems: description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 55, pp. 758–772, 1997. View at Google Scholar
  512. J. Vera, P. De Atauri, M. Cascante, and N. V. Torres, “Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 83, no. 3, pp. 335–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  513. P. K. Polisetty, E. P. Gatzke, and E. O. Voit, “Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods,” Biotechnology and Bioengineering, vol. 99, no. 5, pp. 1154–1169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  514. P. K. Polisetty, E. O. Voit, and E. P. Gatzke, “Yield optimization of Saccharomyces cerevisiae using a GMA model and a MILP-based piecewise linear relaxation method,” in Proceedings of the Foundations of Systems Biology in Engineering, Santa Barbara, Calif, USA, 2005.
  515. P. K. Polisetty, E. Voit, and E. P. Gatzke, “Deterministic global optimization techniques for solution of Nlp and Minlp problems using piecewise linear relaxations with applications in metabolic engineering,” in Proceedings of the AIChE Annual Meeting and Fall Showcase, pp. 6186–6187, November 2005. View at Scopus
  516. R. Lall, T. J. Donohue, S. Marino, and J. C. Mitchell, “Optimizing ethanol production selectivity,” Mathematical and Computer Modelling, vol. 53, no. 7-8, pp. 1363–1373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  517. Y. Chang and N. V. Sahinidis, “Optimization of metabolic pathways under stability considerations,” Computers and Chemical Engineering, vol. 29, no. 3, pp. 467–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  518. G. Xu, “Bi-objective optimization of biochemical systems by linear programming,” Applied Mathematics and Computation, vol. 218, pp. 7562–7572, 2012. View at Google Scholar
  519. O. H. Sendín, J. Vera, N. V. Torres, and J. R. Banga, “Mathematical and computer modelling of dynamical systems: Methods, tools and applications in engineering and related sciences,” Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, vol. 12, pp. 469–487, 2006. View at Google Scholar
  520. G. Xu, “An iterative strategy for yield optimization of metabolic pathways,” in Proceedings of the 4rth International Joint Conference on Computational Sciences and Optimization (CSO '10), pp. 268–269, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  521. C. L. Ko, F. S. Wang, Y. P. Chao, and T. W. Chen, “S-system approach to modeling recombinant Escherichia coli growth by hybrid differential evolution with data collocation,” Biochemical Engineering Journal, vol. 28, no. 1, pp. 10–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  522. C. L. Ko and F. S. Wang, “On-line estimation of biomass and intracellular protein for recombinant Escherichia coli cultivated in batch and fed-batch modes,” Journal of the Chinese Institute of Chemical Engineers, vol. 38, no. 3-4, pp. 197–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  523. F. Alvarez-Vasquez, M. Cánovas, J. L. Iborra, and N. V. Torres, “Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures,” Biotechnology and Bioengineering, vol. 80, no. 7, pp. 794–805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  524. R. Lall and J. Mitchell, “Metal reduction kinetics in Shewanella,” Bioinformatics, vol. 23, no. 20, pp. 2754–2759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  525. R. Sheridan, G. A. Jackson, L. Regan, J. Ward, and P. Dunhill, “Rational engineering of the TOL meta-cleavage pathway,” Biotechnology and Bioengineering, vol. 58, pp. 240–249, 1998. View at Google Scholar
  526. Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu, and A. P. Zeng, “Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane,” Biochemical Engineering Journal, vol. 38, no. 1, pp. 22–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  527. E. Voit, A. R. Neves, and H. Santos, “The intricate side of systems biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 25, pp. 9452–9457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  528. J. K. Horner and M. A. Wolinsky, “A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii,” International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1251–1255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  529. O. Jorquera, A. Kiperstok, E. A. Sales, M. Embiruçu, and M. L. Ghirardi, “S-systems sensitivity analysis of the factors that may influence hydrogen production by sulfur-deprived Chlamydomonas reinhardtii,” International Journal of Hydrogen Energy, vol. 33, no. 9, pp. 2167–2177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  530. T. Zhang, “Dynamics modeling of hydrogen production by sulfur-deprived Chlamydomonas reinhardtii culture in tubular photobioreactor,” International Journal of Hydrogen Energy, vol. 36, pp. 12177–12185, 2011. View at Google Scholar
  531. T. Zhang, “Effects of culture parameters, light, and mixing on H2 production by sulfur-deprived Chlamydomonas reinhardtii in flat plate reactor,” International Journal of Hydrogen Energy, vol. 36, pp. 15168–15176, 2011. View at Google Scholar
  532. F. Streichert, C. Spieth, H. Ulmer, and A. Zell, “How to evolve the head-tail pattern from reaction-diffusion systems,” in Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 261–268, June 2004. View at Publisher · View at Google Scholar · View at Scopus
  533. M. Berovic and M. Legisa, “Citric acid production,” Biotechnology Annual Review, vol. 13, pp. 303–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  534. F. O. Licht, 2011, http://renewablechemicals.agra-net.com/2011/10/chinese-citric-acid-industry-begins-to-consolidate/.
  535. F. Alvarez-Vasquez, C. Gonzalez-Alcon, and N. V. Torres, “Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate,” Biotechnology and Bioengineering, vol. 70, pp. 82–108, 2000. View at Google Scholar
  536. J. García and N. Torres, “Mathematical modelling and assessment of the pH homeostasis mechanisms in Aspergillus niger while in citric acid producing conditions,” Journal of Theoretical Biology, vol. 282, no. 1, pp. 23–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  537. D. V. Guebel and N. V. Torres Darias, “Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model,” Electronic Journal of Biotechnology, vol. 4, no. 1, pp. 3–19, 2001. View at Google Scholar · View at Scopus
  538. N. V. Torres, C. González-Alcón, and E. O. Voit, “Optimization of metabolic systems with linear programming. Application to biotechnological processes,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., pp. 171–174, World Scientific, Singapore, 1996. View at Google Scholar
  539. M. Papagianni, “Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling,” Biotechnology Advances, vol. 25, no. 3, pp. 244–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  540. W. A. de Jongh and J. Nielsen, “Enhanced citrate production through gene insertion in Aspergillus niger,” Metabolic Engineering, vol. 10, no. 2, pp. 87–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  541. R. Alves and A. Sorribas, “In silico pathway reconstruction: iron-sulfur cluster biogenesis in Saccharomyces cerevisiae,” BMC Systems Biology, vol. 1, article 10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  542. F. Alvarez-Vasquez, K. J. Sims, E. O. Voit, and Y. A. Hannun, “Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift,” Theoretical Biology and Medical Modelling, vol. 4, article 42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  543. E. O. Voit and T. Radivoyevitch, “Biochemical systems analysis of genome-wide expression data,” Bioinformatics, vol. 16, no. 11, pp. 1023–1037, 2000. View at Google Scholar · View at Scopus
  544. E. Vilaprinyo, R. Alves, and A. Sorribas, “Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock,” BMC Bioinformatics, vol. 7, article 184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  545. E. Vilaprinyo, R. Alves, and A. Sorribas, “Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes,” PLoS Computational Biology, vol. 6, no. 2, Article ID e1000674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  546. G. Guillén-Gosálbez, C. Pozo, L. Jiménez, and A. Sorribas, “A global optimization strategy to identify quantitative design principles for gene expression in yeast adaptation to heat shock,” Computer Aided Chemical Engineering, vol. 26, pp. 1045–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  547. L. L. Fonseca, C. Sánchez, H. Santos, and E. O. Voit, “Complex coordination of multi-scale cellular responses to environmental stress,” Molecular BioSystems, vol. 7, no. 3, pp. 731–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  548. E. O. Voit, F. Alvarez-Vasquez, and Y. A. Hannun, “Computational analysis of sphingolipid pathway systems,” Advances in Experimental Medicine and Biology, vol. 688, pp. 264–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  549. P.-W. Chen, L. Fonseca, Y. A. Hannun, and E. O. Voit, “Coordination of rapid sphingolipid responses to heat stress in yeast,” submitted.
  550. L. L. Fonseca, P.-W. Chen, and E. O. Voit, “Canonical modeling of the multi-scale regulation of the heat stress response in yeast,” Metabolites, vol. 2, pp. 221–241, 2012. View at Google Scholar
  551. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum—4. Resolution of discrepancies between alternative methods of analysis,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22934–22943, 1992. View at Google Scholar · View at Scopus
  552. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum—III. Analysis of steady state and dynamic behavior,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22926–22933, 1992. View at Google Scholar · View at Scopus
  553. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum—II. Evaluation of model consistency and robustness,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22919–22925, 1992. View at Google Scholar · View at Scopus
  554. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum. Systemic effects of including protein turnover in the current model,” Journal of Biological Chemistry, vol. 268, no. 23, pp. 16917–16928, 1993. View at Google Scholar · View at Scopus
  555. F. Shiraishi and M. A. Savageau, “The tricarboxylic acid cycle in Dictyostelium discoideum—two methods of analysis applied to the same model,” Journal of Theoretical Biology, vol. 178, no. 2, pp. 219–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  556. J. Vera, J. Bachmann, A. C. Pfeifer et al., “A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway,” BMC Systems Biology, vol. 2, article 38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  557. J. Vera and O. Wolkenhauer, “A system biology approach to understand functional activity of cell communication systems,” Methods in Cell Biology, vol. 90, pp. 399–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  558. J. Vera and O. Wolkenhauer, “A system biology approach to understand functional activity of cell communication systems,” in Methods in Nano Cell Biology, B. Ramaswamy, Ed., Elsevier, 2008. View at Google Scholar
  559. J. Vera, T. Millat, W. Kolch, and O. Wolkenhauer, “Dynamics of receptor and protein transducer homodimerisation,” BMC Systems Biology, vol. 2, article 92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  560. J. Vera, O. Rath, E. Balsa-Canto, J. R. Banga, W. Kolch, and O. Wolkenhauer, “Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models,” Molecular BioSystems, vol. 6, no. 11, pp. 2174–2191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  561. X. Lai, S. Nikolov, O. Wolkenhauer, and J. Vera, “A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis,” Computational Biology and Chemistry, vol. 33, no. 4, pp. 312–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  562. S. Nikolov, J. Vera, O. Rath, W. Kolch, and O. Wolkenhauer, “Role of inhibitory proteins as modulators of oscillations in NFκB signalling,” IET Systems Biology, vol. 3, no. 2, pp. 59–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  563. Y.-W. Liu, C.-K. Chen, and C.-L. Lin, “Signal transduction networks in biological systems based on Michaelis-Menten equation and S-system,” in Proceedings of the 7th WSEAS International Conference on Computational Intelligence, Man-Made Machine Systems and Cybernetics, pp. 25–28, 2008.
  564. E. R. Boykin and W. O. Ogle, “Using heterogeneous data sources in a systems biology approach to modeling the Sonic Hedgehog signaling pathway,” Molecular BioSystems, vol. 6, no. 10, pp. 1993–2003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  565. J. C. J. Ray and D. E. Kirschner, “Requirement for multiple activation signals by anti-inflammatory feedback in macrophages,” Journal of Theoretical Biology, vol. 241, no. 2, pp. 276–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  566. J. H. Schwacke and E. O. Voit, “Concentration-dependent effects on the rapid and efficient activation of the MAP kinase signaling cascade,” Proteomics, vol. 7, no. 6, pp. 890–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  567. J. H. Schwacke and E. O. Voit, “The potential for signal integration and processing in interacting MAP kinase cascades,” Journal of Theoretical Biology, vol. 246, no. 4, pp. 604–620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  568. A. Sorribas, “Exploring the properties of signal transduction pathways by mathematical controlled comparisons based on power-law models,” in Methodologies for the Conception, Design, and Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., pp. 179–182, World Scientific, Singapore, 1996. View at Google Scholar
  569. C.-L. Lin, Y.-W. Liu, and C.-H. Chuang, “Analysis of signal transduction networks in Michaelis-Menten equations and S-systems,” International Journal of Biology and Biomedical Engineering, vol. 2, pp. 69–78, 2008. View at Google Scholar
  570. D. F. Smith, “Quantitative analysis of the functional relationships existing between ecosystem components—I. Analysis of the linear intercomponent mass transfers,” Oecologia, vol. 16, no. 2, pp. 97–106, 1974. View at Publisher · View at Google Scholar · View at Scopus
  571. D. F. Smith, “Quantitative analysis of the functional relationships existing between ecosystem components—II. Analysis of non-linear relationships,” Oecologia, vol. 16, no. 2, pp. 107–117, 1974. View at Publisher · View at Google Scholar · View at Scopus
  572. D. F. Smith, “Quantitative analysis of the functional relationships existing between ecosystem components—III. Analysis of ecosystem stability,” Oecologia, vol. 21, no. 1, pp. 17–29, 1975. View at Publisher · View at Google Scholar · View at Scopus
  573. N. V. Torres, “S-system modelling approach to ecosystem: application to a study of magnesium flow in a tropical forest,” Ecological Modelling, vol. 89, no. 1–3, pp. 109–120, 1996. View at Google Scholar · View at Scopus
  574. P. J. Sands and E. O. Voit, “Flux-based estimation of parameters in S-systems,” Ecological Modelling, vol. 93, no. 1–3, pp. 75–88, 1996. View at Publisher · View at Google Scholar · View at Scopus
  575. E. O. Voit, “Dynamic trends in distributions,” Biometrical Journal, vol. 38, no. 5, pp. 587–603, 1996. View at Google Scholar · View at Scopus
  576. E. O. Voit and P. J. Sands, “Modeling forest growth—II. Biomass partitioning in Scots pine,” Ecological Modelling, vol. 86, no. 1, pp. 73–89, 1996. View at Google Scholar · View at Scopus
  577. P. Kaitaniemi, “A canonical model of tree resource allocation after defoliation and bud consumption,” Ecological Modelling, vol. 129, no. 2-3, pp. 259–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  578. P. G. Martin, “The use of canonical S-system modelling for condensation of complex dynamic models,” Ecological Modelling, vol. 103, no. 1, pp. 43–70, 1997. View at Publisher · View at Google Scholar · View at Scopus
  579. M. Renton, J. Hanan, and K. Burrage, “Using the canonical modelling approach to simplify the simulation of function in functional-structural plant models,” New Phytologist, vol. 166, no. 3, pp. 845–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  580. M. Renton, P. Kaitaniemi, and J. Hanan, “Functional-structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function,” Ecological Modelling, vol. 184, no. 2–4, pp. 277–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  581. M. Renton, D. Thornby, and J. Hanan, “Canonical modeling,” in Functional-Structural Plant Modelling in Crop Production, J. Vos, L. F. M. Marcelis, P. H. B. d. Visser, P. C. Struik, and J. B. Evers, Eds., pp. 151–164, Springer, 2007. View at Google Scholar
  582. E. O. Voit, “Dynamics of self-thinning plant stands,” Annals of Botany, vol. 62, no. 1, pp. 67–78, 1988. View at Google Scholar · View at Scopus
  583. S. D. Pittman and E. C. Turnblom, “A study of self-thinning using coupled allometric equations: implications for coastal Douglas-fir stand dynamics,” Canadian Journal of Forest Research, vol. 33, no. 9, pp. 1661–1669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  584. E. O. Voit and A. Sorribas, “Computer modeling of dynamically changing distributions of random variables,” Mathematical and Computer Modelling, vol. 31, no. 4-5, pp. 217–225, 2000. View at Publisher · View at Google Scholar · View at Scopus
  585. T. Johnson, “Estimation and simulation of 3-systems,” Mathematical and Computer Modelling, vol. 11, pp. 134–139, 1988. View at Google Scholar · View at Scopus
  586. T. Johnson, “Modeling growth for economic analysis of dynamic agricultural systems,” Departmental Report, Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA, 1985. View at Google Scholar
  587. Y. Lee and E. O. Voit, “Mathematical modeling of monolignol biosynthesis in Populus xylem,” Mathematical Biosciences, vol. 228, no. 1, pp. 78–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  588. K. Chaudhuri and T. Johnson, “Bioeconomic dynamics of a fishery modeled as an S-system,” Mathematical Biosciences, vol. 99, no. 2, pp. 231–249, 1990. View at Publisher · View at Google Scholar · View at Scopus
  589. S. Ganguly and K. S. Chaudhuri, “Regulation of a single-species fishery by taxation,” Ecological Modelling, vol. 82, no. 1, pp. 51–60, 1995. View at Publisher · View at Google Scholar · View at Scopus
  590. A. B. Brown, Determining the economically optimum slaughter age and time paths for dietary energy and protein [Doctoral dissertation], North Carolina State University, Raleigh, NC, USA, 1991.
  591. A. B. Brown and T. Johnson, Use of an S-System in Optimal Control of a Biological System, Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA, 1992.
  592. J. A. Hormiga, E. Almansa, A. V. Sykes, and N. V. Torres, “Model based optimization of feeding regimens in aquaculture: application to the improvement of Octopus vulgaris viability in captivity,” Journal of Biotechnology, vol. 149, no. 3, pp. 209–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  593. N. V. Torres, “Modelization and experimental studies on the control of the glycolytic- glycogenolytic pathway in rat liver,” Molecular and Cellular Biochemistry, vol. 132, no. 2, pp. 117–126, 1994. View at Publisher · View at Google Scholar · View at Scopus
  594. A. Ervadi-Radhakrishnan and E. O. Voit, “Controllability of non-linear biochemical systems,” Mathematical Biosciences, vol. 196, no. 1, pp. 99–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  595. H. N. Nounou and N. Meskin, “Fuzzy intervention in biological phenomena,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 6, pp. 1819–1825, 2012. View at Publisher · View at Google Scholar
  596. N. Meskin, H. N. Nounou, M. Nounou, A. Datta, and E. R. Dougherty, “Intervention in biological phenomena modeled by S-systems,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1260–1267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  597. N. Meskin, H. Nounou, M. Nounou, E. R. Datta, and A. E. R. Dougherty, “Intervention in biological phenomena modeled by S-systems: A Model predictive control approach,” in Proceedings of the American Control Conference, pp. 3519–3523, 2011.
  598. S. L. Reilly, C. F. Sing, M. A. Savageau, and S. T. Turner, “Analysis of systems influencing renal hemodynamics and sodium excretion. I. Biochemical systems theory,” Integrative Physiological and Behavioral Science, vol. 29, no. 1, pp. 55–73, 1994. View at Publisher · View at Google Scholar · View at Scopus
  599. W. Yin, H. Jo, and E. O. Voit, “Systems analysis of the role of bone morphogenic protein 4 in endothelial inflammation,” Annals of Biomedical Engineering, vol. 38, no. 2, pp. 291–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  600. A. Sorribas and A. González, “The power-law formalism as a tool for modeling hormonal systems,” Journal of Theoretical Medicine, vol. 2, no. 2, pp. 19–38, 2000. View at Google Scholar · View at Scopus
  601. G. M. H. Thomas, “Modelling the effects of inhibitors of guanine nucleotide synthesis: implications for studies of cellular differentiation pathways,” Biochemical Society Transactions, vol. 38, no. 5, pp. 1314–1318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  602. Z. Qi, S. Kikuchi, F. Tretter, and E. O. Voit, “Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders,” Pharmacopsychiatry, vol. 44, no. 1, pp. S62–S75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  603. Z. Qi, G. W. Miller, and E. O. Voit, “A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia,” Pharmacopsychiatry, vol. 41, no. 1, pp. S89–S98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  604. Z. Qi, G. W. Miller, and E. O. Voit, “Computational systems analysis of dopamine metabolism,” PLoS ONE, vol. 3, no. 6, Article ID e2444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  605. Z. Qi, G. W. Miller, and E. O. Voit, “Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals,” Synapse, vol. 63, no. 12, pp. 1133–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  606. Z. Qi, G. W. Miller, and E. O. Voit, “Computational modeling of synaptic neurotransmission as a tool for assessing dopamine hypotheses of schizophrenia,” Pharmacopsychiatry, vol. 43, no. 1, pp. S50–S60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  607. Z. Qi, G. W. Miller, and E. O. Voit, “The internal state of medium spiny neurons varies in response to different input signals,” BMC Systems Biology, vol. 4, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  608. Z. Qi, G. W. Miller, and E. O. Voit, “Mathematical Models in Schizophrenia,” in Textbook of Schizophrenia Spectrum Disorders, M. S. Ritsner, Ed., vol. 1, Springer, New York, NY, USA, 2011. View at Google Scholar
  609. Z. Qi, G. W. Miller, and E. O. Voit, “Mathematical models of dopamine metabolism in Parkinson’s disease,” in The Systems Biology of Parkinson’s Disease, P. W. A. M. Cloutier, Ed., Springer, New York, NY, USA, 2012. View at Google Scholar
  610. B. Dulam-Banawa, A. Marin-Sanguino, and E. Mendoza, “The evolution of synapse models from numbers to networks to spaces,” Pharmacopsychiatry, vol. 43, no. 1, pp. S42–S49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  611. E. R. Mendoza, “From communicational to computational: systems modeling approaches for psychiatric research,” in Systems Biology and Psychiatric Research, F. Tretter, P. Gebicke-Härter, G. Winterer, and E. R. Mendoza, Eds., Wiley VCH, 2010. View at Google Scholar
  612. A. Marin-Sanguino, R. C. del Rosario, and E. R. Mendoza, “Concept maps and canonical models in neuropsychiatry,” Pharmacopsychiatry, vol. 42, pp. S110–117, 2009. View at Google Scholar · View at Scopus
  613. M. B. Sass, A. N. Lorenz, R. L. Green, and R. A. Coleman, “A pragmatic approach to biochemical systems theory applied to an α-synuclein-based model of Parkinson's disease,” Journal of Neuroscience Methods, vol. 178, no. 2, pp. 366–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  614. S. Liu, C. Tao, Z. Huang, and S. Huang, “Modeling of p53 signaling pathway based on S-system equations,” Journal of Biomedical Engineering, vol. 27, pp. 505–510, 2010 (Chinese). View at Google Scholar
  615. J. Vera, J. Schultz, S. Ibrahim, Y. Raatz, O. Wolkenhauer, and M. Kunz, “Dynamical effects of epigenetic silencing of 14-3-3σ expression,” Molecular BioSystems, vol. 6, no. 1, pp. 264–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  616. T. M. Broome and R. A. Coleman, “A mathematical model of cell death in multiple sclerosis,” Journal of Neuroscience Methods, vol. 201, pp. 420–425, 2011. View at Google Scholar
  617. A. E. N. Ferreira, A. M. J. Ponces Freire, and E. O. Voit, “A quantitative model of the generation of Nε-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose,” Biochemical Journal, vol. 376, no. 1, pp. 109–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  618. J. Garcia, J. Shea, F. Alvarez-Vasquez et al., “Mathematical modeling of pathogenicity of Cryptococcus neoformans,” Molecular Systems Biology, vol. 4, article 183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  619. J. Garcia, K. J. Sims, J. H. Schwacke, and M. D. Poeta, “Biochemical systems analysis of signaling pathways to understand fungal pathogenicity,” Methods in Molecular Biology, vol. 734, pp. 173–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  620. P. H. Berg, E. O. Voit, and R. L. White, “A pharmacodynamic model for the action of the antibiotic imipenem on Pseudomonas aeruginosa populations in vitro,” Bulletin of Mathematical Biology, vol. 58, no. 5, pp. 923–938, 1996. View at Google Scholar · View at Scopus
  621. J. Vera, R. Curto, M. Cascante, and N. V. Torres, “Detection of potential enzyme targets by metabolic modelling and optimization: application to a simple enzymopathy,” Bioinformatics, vol. 23, no. 17, pp. 2281–2289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  622. B. M. Langer, C. Pou-Barreto, C. Gonzalez-Alcon, B. Valladares, B. Wimmer, and N. V. Torres, “Modeling of Leishmaniasis infection dynamics: novel application to the design of effective therapies,” BMC Systems Biology, vol. 6, article 1, 2012. View at Google Scholar
  623. G. Magombedze and N. Mulder, “Understanding TB latency using computational and dynamic modelling procedures,” Infection, Genetics and Evolution. In press.
  624. E. O. Voit, “S-system modelling of endemic infections,” Computers and Mathematics with Applications, vol. 20, no. 4–6, pp. 161–173, 1990. View at Google Scholar · View at Scopus
  625. W. L. Balthis, E. O. Voit, and G. M. Meaburn, “Setting prediction limits for mercury concentrations in fish having high bioaccumulation potential,” Environmetrics, vol. 7, pp. 429–439, 1996. View at Google Scholar
  626. E. O. Voit and R. G. Knapp, “Derivation of the linear-logistic model and Cox's proportional hazard model from a canonical system description,” Statistics in Medicine, vol. 16, pp. 1705–1729, 1997. View at Google Scholar
  627. E. O. Voit, “Utility of Biochemical Systems Theory for the analysis of metabolic effects from low-dose chemical exposure,” Risk Analysis, vol. 20, no. 3, pp. 393–402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  628. E. O. Voit and K. L. Brigham, “The role of systems biology in predictive health and personalized medicine,” The Open Pathology Journal, vol. 2, pp. 68–70, 2008. View at Google Scholar
  629. Y. Vodovotz, G. Constantine, J. Rubin, M. Csete, E. O. Voit, and G. An, “Mechanistic simulations of inflammation: current state and future prospects,” Mathematical Biosciences, vol. 217, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  630. D. Faratian, R. G. Clyde, J. W. Crawford, and D. J. Harrison, “Systems pathology—taking molecular pathology into a new dimension,” Nature Reviews Clinical Oncology, vol. 6, no. 8, pp. 455–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  631. D. Faratian, J. L. Bown, V. A. Smith, S. P. Langdon, and D. J. Harrison, “Cancer Systems Biology,” in Stem Cells: The Importance of Modelling, vol. 662 of Methods in Molecular Biology, pp. 245–263, Springer, 2010. View at Google Scholar
  632. C. A. Athale, M. O. Christensen, R. Eils, F. Boege, and C. Mielke, “Inferring a system model of subcellular topoisomerase IIβ localization dynamics,” OMICS, vol. 8, no. 2, pp. 167–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  633. B. Ø. Palsson, Systems Biology: Properties of Reconstructed Networks, Cambridge University Press, New York, NY, USA, 2006.
  634. E. O. Voit, “Optimization in integrated biochemical systems,” Biotechnology and Bioengineering, vol. 40, no. 5, pp. 572–582, 1992. View at Google Scholar · View at Scopus
  635. L. Regan, I. D. L. Bogle, and P. Dunnill, “Simulation and optimization of metabolic pathways,” Computers and Chemical Engineering, vol. 17, no. 5-6, pp. 627–637, 1993. View at Google Scholar · View at Scopus
  636. E. O. Voit and M. D. Signore, “Assessment of effects of experimental imprecision on optimized biochemical systems,” Biotechnology and Bioengineering, vol. 74, no. 5, pp. 443–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  637. A. Marín-Sanguino and N. V. Torres, “Optimization of biochemical systems by linear programming and general mass action model representations,” Mathematical Biosciences, vol. 184, no. 2, pp. 187–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  638. J. Vera, N. V. Torres, C. G. Moles, and J. Banga, “Integrated nonlinear optimization of bioprocesses via linear programming,” AIChE Journal, vol. 49, no. 12, pp. 3173–3187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  639. G. Xu, C. Shao, and Z. Xiu, “A modified iterative IOM approach for optimization of biochemical systems,” Computers and Chemical Engineering, vol. 32, no. 7, pp. 1546–1568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  640. G. Xu, “Optimization of biochemical networks under uncertainty,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS '09), pp. 157–160, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  641. G. Xu, “Comparison of iterative IOM approaches for optimization of biological systems under uncertainty,” in Proceedings of the 2nd International Conference on Intelligent Computing Technology and Automation (ICICTA '09), pp. 163–167, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  642. A. Marin-Sanguino, E. O. Voit, C. Gonzalez-Alcon, and N. V. Torres, “Optimization of biotechnological systems through geometric programming,” Theoretical Biology and Medical Modelling, vol. 4, article 38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  643. A. Sorribas, C. Pozo, E. Vilaprinyo, G. Guillén-Gosálbez, L. Jiménez, and R. Alves, “Optimization and evolution in metabolic pathways: global optimization techniques in Generalized Mass Action models,” Journal of Biotechnology, vol. 149, no. 3, pp. 141–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  644. G. Guillén-Gosálbez, C. Pozo, L. Jiménez, and A. Sorribas, “An outer approximation algorithm for the global optimization of regulated metabolic systems,” in Proceedings of the 10th International Symposium on Process Systems Engineering, T. M. de Brito Alves, C. A. Oller, and E. C. Biscaia, Eds., pp. 1707–1712, Elsevier B.V., 2009.
  645. C. Pozo, G. Guillén-Gosálbez, A. Sorribas, and L. Jiménez, “Outer approximation-based algorithm for biotechnology studies in systems biology,” Computers and Chemical Engineering, vol. 34, no. 10, pp. 1719–1730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  646. C. Pozo, A. Marin-Sanguino, R. Alves, G. Guillen-Gosalbez, L. Jimenez, and A. Sorribas, “Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models,” BMC Systems Biology, vol. 5, article 137, 2011. View at Google Scholar
  647. Y. Zheng, C. W. Yeh, C. D. Yang, S. S. Jang, and I. M. Chu, “On the local optimal solutions of metabolic regulatory networks using information guided genetic algorithm approach and clustering analysis,” Journal of Biotechnology, vol. 131, no. 2, pp. 159–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  648. K. Sriyudthsak and F. Shiraishi, “Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells,” Mathematical Biosciences, vol. 228, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  649. K. Sriyudthsak and F. Shiraishi, “Selection of best indicators for ranking and determination of bottleneck enzymes in metabolic reaction systems,” Industrial and Engineering Chemistry Research, vol. 49, no. 20, pp. 9738–9742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  650. J. Vera, C. González-Alcón, A. Marín-Sanguino, and N. Torres, “Optimization of biochemical systems through mathematical programming: methods and applications,” Computers and Operations Research, vol. 37, no. 8, pp. 1427–1438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  651. H. Link, J. Vera, D. Weuster-Botz, N. Torres Darias, and E. Franco-Lara, “Multi-objective steady state optimization of biochemical reaction networks using a constrained genetic algorithm,” Computers and Chemical Engineering, vol. 32, no. 8, pp. 1707–1713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  652. J. Vera, C. G. Moles, J. Banga, and N. V. Torres, “Optimal non-linear design and control of bioprocesses via linear programming,” in Computer Applications in Biotechnology, M.-N. Pons and J. F. M. Van Impe, Eds., pp. 469–472, Elsevier IFAC Publications, 2004. View at Google Scholar
  653. N. V. Torres, E. O. Voit, C. Glez-Alcón, and F. Rodríguez, “Optimization of nonlinear biotechnological processes with linear programming. Application to citric acid production in Aspergillus niger,” Biotechnology and Bioengineering, vol. 49, pp. 247–258, 1996. View at Google Scholar
  654. A. Sevilla, J. Vera, Z. Díaz, M. Cánovas, N. V. Torres, and J. L. Iborra, “Design of metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli. Integration of the metabolic and bioreactor levels,” Biotechnology Progress, vol. 21, no. 2, pp. 329–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  655. M. Cánovas, V. Bernal, Á. Sevilla, and J. L. Iborra, “Role of wet experiment design in data generation: from in vivo to in silico and back,” In Silico Biology, vol. 7, no. 2, pp. 3–16, 2007. View at Google Scholar · View at Scopus
  656. J. Hormiga, C. González-Alcón, A. Sevilla, M. Cánovas, and N. V. Torres, “Quantitative analysis of the dynamic signaling pathway involved in the cAMP mediated induction of L-carnitine biosynthesis in E. coli cultures,” Molecular BioSystems, vol. 6, no. 4, pp. 699–710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  657. G. Santos, J. A. Hormiga, P. Arense, M. Canovas, and N. V. Torres, “Modelling and analysis of central metabolism operating regulatory interactions in salt stress conditions in a L-carnitine overproducing E. coli strain,” PloS ONE, vol. 7, Article ID e34533, 2012. View at Google Scholar
  658. A. Marín-Sanguino and N. V. Torres, “Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization,” Biotechnology Progress, vol. 16, no. 2, pp. 133–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  659. L. K. Nguyen and D. Kulasiri, “On multiple regulatory mechanisms in the tryptophan operon system in Escherichia coli: in silico study of perturbation dynamics,” In Silico Biology, vol. 8, no. 5-6, pp. 485–510, 2008. View at Google Scholar · View at Scopus
  660. Y. Sun, X. Mu, Z. Li, H. Teng, and Z. Xiu, “Robustness and nonlinear dynamic analysis for trp operan and optimization of tryptophan production: an integrated model considering gene regulation, genes interaction and product excretion,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '10), pp. 1–7, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  661. A. Marín-Sanguino and N. V. Torres, “Modelling, steady state analysis and optimization of the catalytic efficiency of the triosephosphate isomerase,” Bulletin of Mathematical Biology, vol. 64, no. 2, pp. 301–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  662. N. Meskin, H. Nounou, M. Nounou, A. Datta, and E. Dougherty, “Output-feedback model predictive control of biological phenomena modeled by S-systems,” in Proceedings of the American Control Conference, Montréal, Canada, 2012.
  663. A. Domingues, S. Vinga, and J. M. Lemos, “Optimization strategies for metabolic networks,” BMC Systems Biology, vol. 4, article 113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  664. C. E. Long, E. O. Voit, and E. P. Gatzke, “A mixed integer moving horizon formulation for prioritized objective inferential control of a bioprocess system,” in Proceedings of the American Control Conference, pp. 2365–2370, June 2003. View at Scopus
  665. M. Cascante, A. Sorribas, and E. I. Canela, “Enzyme-enzyme interactions and metabolite channelling: alternative mechanisms and their evolutionary significance,” Biochemical Journal, vol. 298, no. 2, pp. 313–320, 1994. View at Google Scholar · View at Scopus
  666. P. W. Klymko and R. Kopelman, “Fractal reaction kinetics: exciton fusion on clusters,” Journal of Physical Chemistry, vol. 87, no. 23, pp. 4565–4567, 1983. View at Google Scholar · View at Scopus
  667. L. W. Anacker and R. Kopelman, “Fractal chemical kinetics: simulations and experiments,” The Journal of Chemical Physics, vol. 81, no. 12, pp. 6402–6403, 1984. View at Google Scholar · View at Scopus
  668. R. Kopelman, “Reaction kinetics in restricted spaces,” Israel Journal of Chemistry, vol. 31, pp. 147–157, 1991. View at Google Scholar
  669. R. Kopelman, “Rate processes on fractals: theory, simulations, and experiments,” Journal of Statistical Physics, vol. 42, no. 1-2, pp. 185–200, 1986. View at Publisher · View at Google Scholar · View at Scopus
  670. R. Kopelman, “Fractal reaction kinetics,” Science, vol. 241, no. 4873, pp. 1620–1626, 1988. View at Google Scholar · View at Scopus
  671. M. A. Savageau, “Influence of fractal kinetics on molecular recognition,” Journal of Molecular Recognition, vol. 6, no. 4, pp. 149–157, 1993. View at Google Scholar · View at Scopus
  672. M. A. Savageau, “Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways,” BioSystems, vol. 47, no. 1-2, pp. 9–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  673. M. A. Savageau, “Fractal kinetic effects on equilibrium,” in Methodologies for the Conception, Design, amd Application of Intelligent Systems, T. Yamakawa and G. Matsumoto, Eds., vol. 1, pp. 187–190, World Scientific, Singapore, 1996. View at Google Scholar
  674. Ž. Bajzer, M. Huzak, K. L. Neff, and F. G. Prendergast, “Mathematical analysis of models for reaction kinetics in intracellular environments,” Mathematical Biosciences, vol. 215, no. 1, pp. 35–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  675. K. L. Neff, Biochemical reaction kinetics in dilute and crowded solutions: predictions of macroscopic and mesoscopic models and experimental observations [Doctoral dissertation], Mayo Clinic, Rochester, Minn, USA, 2010.
  676. K. L. Neff, C. P. Offord, A. J. Caride, E. E. Strehler, F. G. Prendergast, and Ž. Bajzer, “Validation of fractal-like kinetic models by time-resolved binding kinetics of dansylamide and carbonic anhydrase in crowded media,” Biophysical Journal, vol. 100, no. 10, pp. 2495–2503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  677. E. O. Voit and A. E. N. Ferreira, “Buffering in models of integrated biochemical systems,” Journal of Theoretical Biology, vol. 191, no. 4, pp. 429–437, 1998. View at Publisher · View at Google Scholar · View at Scopus
  678. W. T. Mocek, R. Rudnicki, and E. O. Voit, “Approximation of delays in biochemical systems,” Mathematical Biosciences, vol. 198, no. 2, pp. 190–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  679. E. O. Voit, “S-system modelling of complex systems with chaotic input,” Environmetrics, vol. 4, no. 2, pp. 153–186, 1993. View at Google Scholar · View at Scopus
  680. E. O. Voit, F. Alvarez-Vasquez, and K. J. Sims, “Analysis of dynamic labeling data,” Mathematical Biosciences, vol. 191, no. 1, pp. 83–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  681. F. Alvarez-Vasquez, Y. A. Hannun, and E. O. Voit, “Dynamics of positional enrichment: theoretical development and application to carbon labeling in Zymomonas mobilis,” Biochemical Engineering Journal, vol. 40, no. 1, pp. 157–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  682. E. O. Voit and P. N. Yi, “Comparison of isoeffect relationships in radiotherapy,” Bulletin of Mathematical Biology, vol. 52, no. 5, pp. 657–675, 1990. View at Publisher · View at Google Scholar · View at Scopus
  683. L. Feinendegen, P. Hahnfeldt, E. E. Schadt, M. Stumpf, and E. O. Voit, “Systems biology and its potential role in radiobiology,” Radiation and Environmental Biophysics, vol. 47, no. 1, pp. 5–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  684. A. Marin-Sanguino, E. R. Mendoza, and E. O. Voit, “Flux duality in nonlinear GMA systems: implications for metabolic engineering,” Journal of Biotechnology, vol. 149, no. 3, pp. 166–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  685. E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, New York, NY, USA, 7th edition, 1993.
  686. P. de Atauri, A. Sorribas, and M. Cascante, “Analysis and prediction of the effect of uncertain boundary values in modeling a metabolic pathway,” Biotechnology and Bioengineering, vol. 68, pp. 18–30, 2000. View at Google Scholar
  687. P. De Atauri, R. Curto, J. Puigjaner, A. Cornish-Bowden, and M. Cascante, “Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modelling metabolic pathways,” European Journal of Biochemistry, vol. 265, no. 2, pp. 671–679, 1999. View at Publisher · View at Google Scholar · View at Scopus
  688. A. Machina, A. Ponosov, and E. O. Voit, “Automated piecewise power-law modeling of biological systems,” Journal of Biotechnology, vol. 149, no. 3, pp. 154–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  689. M. Cascante, A. Sorribas, R. Franco, and E. I. Canela, “Biochemical systems theory: increasing predictive power by using second-order derivatives measurements,” Journal of Theoretical Biology, vol. 149, no. 4, pp. 521–535, 1991. View at Google Scholar · View at Scopus
  690. C. Kaddi, C. F. Quo, and M. D. Wang, “Quantitative metrics for bio-modeling algorithm selection,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4613–4616, 2008.
  691. A. Dräger, M. Kronfeld, M. J. Ziller et al., “Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies,” BMC Systems Biology, vol. 3, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  692. F. Hadlich, S. Noack, and W. Wiechert, “Translating biochemical network models between different kinetic formats,” Metabolic Engineering, vol. 11, no. 2, pp. 87–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  693. R. Grima and S. Schnell, “How reaction kinetics with time-dependent rate coefficients differs from generalized mass action,” ChemPhysChem, vol. 7, no. 7, pp. 1422–1424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  694. O. Wolkenhauer, M. Ullah, W. Kolch, and K. H. Cho, “Modeling and simulation of intracellular dynamics: choosing an appropriate framework,” IEEE Transactions on Nanobioscience, vol. 3, no. 3, pp. 200–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  695. E. O. Voit and M. A. Savageau, “Accuracy of alternative representations for integrated biochemical systems,” Biochemistry, vol. 26, no. 21, pp. 6869–6880, 1987. View at Google Scholar · View at Scopus
  696. M. O. Vlad, A. D. Corlan, F. Morán, R. Spang, P. Oefner, and J. Ross, “Kinetic laws, phase-phase expansions, renormalization group, and INR calibration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6465–6470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  697. M. A. Savageau, “Allometric morphogenesis of complex systems: derivation of the basic equations from first principles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 12, pp. 6023–6025, 1979. View at Google Scholar · View at Scopus
  698. M. A. Savageau, “Growth equations: a general equation and a survey of special cases,” Mathematical Biosciences, vol. 48, no. 3-4, pp. 267–278, 1980. View at Publisher · View at Google Scholar · View at Scopus
  699. E. O. Voit, “Selecting a model for integrated biomedical systems,” in Biomedical Modeling and Simulation, J. Eisenfeld, D. S. Levine, and M. Witten, Eds., pp. 465–472, Elsevier Science Publishers, Amsterdam, The Netherlands, 1992. View at Google Scholar
  700. G. B. West, J. H. Brown, and B. J. Enquist, “A general model for the origin of allometric scaling laws in biology,” Science, vol. 276, no. 5309, pp. 122–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  701. G. B. West, J. H. Brown, and B. J. Enquist, “A general model for ontogenetic growth,” Nature, vol. 413, no. 6856, pp. 628–631, 2001. View at Publisher · View at Google Scholar · View at Scopus
  702. A. Sorribas, J. March, and E. O. Voit, “Estimating age-related trends in cross-sectional studies using S-distributions,” Statistics in Medicine, vol. 19, pp. 697–713, 2000. View at Google Scholar
  703. E. O. Voit, “Cell cycles and growth laws: the CCC model,” Journal of Theoretical Biology, vol. 114, no. 4, pp. 589–599, 1985. View at Google Scholar · View at Scopus
  704. E. O. Voit, “Generic modeling of population dynamics with S-systems,” in Proceedings of the 2nd International Conference on Mathematical Population Dynamics, pp. 261–280, Marcel Dekker, 1990.
  705. E. O. Voit, H. J. Anton, and J. Blecker, “Regenerative growth curves,” Mathematical Biosciences, vol. 73, no. 2, pp. 253–269, 1985. View at Publisher · View at Google Scholar · View at Scopus
  706. E. O. Voit, “Recasting of nonlinearities as S-systems,” in Canonical Nonlinear Modeling. S-system Approach to Understanding Complexity, E. O. Voit, Ed., pp. 213–237, Van Nostrand, Reinhold, NY, USA, 1991. View at Google Scholar
  707. E. H. Kerner, “Universal formats for nonlinear ordinary differential systems,” Journal of Mathematical Physics, vol. 22, no. 7, pp. 1366–1371, 1980. View at Google Scholar · View at Scopus
  708. L. Brenig, “Complete factorisation and analytic solutions of generalized Lotka-Volterra equations,” Physics Letters A, vol. 133, no. 7-8, pp. 378–382, 1988. View at Google Scholar · View at Scopus
  709. L. Brenig, “New special functions solfing nonlinear autonomous dynamical systems,” http://arxiv.org/abs/0910.2584.
  710. L. Brenig and A. Goriely, “Universal canonical forms for time-continuous dynamical systems,” Physical Review A, vol. 40, no. 7, pp. 4119–4122, 1989. View at Publisher · View at Google Scholar · View at Scopus
  711. A. Papachristodoulou and S. Prajna, “Analysis of non-polynomial systems using the sum of squares decomposition,” in Positive Polynomials in Control, D. Henrion and A. Garuli, Eds., pp. 23–43, Springer, Berlin, Germany, 2005. View at Google Scholar
  712. E. O. Voit, “How many variables? Some comments on the dimensionality of nonlinear systems,” in Proceedings of the World Congress of Nonlinear Analysts, V. Lakshmikantham, Ed., Walter de Gruyter & Co, New York, NY, USA, 1992.
  713. E. O. Voit, “Algebraic properties of S-systems,” in Canonical Nonlinear Modeling. S-system Approach to Understanding Complexity, E. O. Voit, Ed., pp. 278–303, Van Nostrand, Reinhold, NY, USA, 1991. View at Google Scholar
  714. E. O. Voit, “Symmetries of S-systems,” Mathematical Biosciences, vol. 109, no. 1, pp. 19–37, 1992. View at Publisher · View at Google Scholar · View at Scopus
  715. M. A. Savageau, “A suprasystem of probability distributions,” Biometrical Journal, vol. 24, pp. 323–330, 1982. View at Google Scholar
  716. P. F. Rust and E. O. Voit, “Non-central chi-square distributions computed by S-system differential equations,” in Proceedings of the Annual Meeting of the American Statistical Association, Statistical Computing Section, pp. 118–121, San Francisco, Calif, USA, 1987.
  717. P. F. Rust and E. O. Voit, “S-system computation of central and noncentral F densities and cumulatives,” in Proceedings of the Annual Meeting of the American Statistical Association, Statistical Computing Section, pp. 274–279, 1988.
  718. P. F. Rust and E. O. Voit, “S-system analysis of the noncentral t distribution with fractional degrees of freedom,” in Proceedings of the Annual Meeting of the American Statistical Association, Statistical Computing Section, pp. 84–87, 1989.
  719. P. F. Rust and E. O. Voit, “Statistical densities, cumulatives, quantiles, and power obtained by S-system differential equations,” Journal of the American Statistical Association, vol. 85, pp. 572–578, 1990. View at Google Scholar
  720. E. O. Voit and P. F. Rust, “Evaluation of the noncentral t distribution with S-systems,” Biometrical Journal, vol. 32, pp. 681–695, 1990. View at Google Scholar
  721. P. F. Rust, “Modeling approximately normal distributions with S-systems,” in Annual Meeting of the American Statistical Association, Statistical Computing Section, pp. 162–166, 1991.
  722. P. F. Rust, “Applications of recasting in statistical distributions,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, E. O. Voit, Ed., pp. 238–257, Van Nostrand Reinhold, 1991. View at Google Scholar
  723. Y. C. Chou, P. L. Chang, and Z. Y. Chen, “Comparing S-system with existing methods for the computation of noncentral beta distribution,” International Journal of Information and Management Sciences, vol. 11, no. 2, pp. 37–48, 2000. View at Google Scholar · View at Scopus
  724. Z. Y. Chen and Y. C. Chou, “Computing the noncentral beta distribution with S-system,” Computational Statistics and Data Analysis, vol. 33, no. 4, pp. 343–360, 2000. View at Google Scholar · View at Scopus
  725. Z. Y. Chen, C. C. Chen, and C. Y. Lai, “On the S-system computation of statistical distributions,” Journal of the Chinese Statistical Association, vol. 37, pp. 222–201, 1999 (Chinese). View at Google Scholar
  726. Z. Y. Chen, “On the statistical computation of the sample multiple correlation coefficient,” Journal of Statistical Computation and Simulation, vol. 70, no. 4, pp. 299–324, 2001. View at Google Scholar · View at Scopus
  727. Z. Y. Chen, “Computing the distribution of the squared sample multiple correlation coefficient with S-systems,” Communications in Statistics Part B, vol. 32, no. 3, pp. 873–898, 2003. View at Publisher · View at Google Scholar · View at Scopus
  728. M. H. Lee and B. R. Ahmad Mahir, “Penggunaan pendekatan sistem-S dan ESSYNS dalam analisis taburan normal,” Pertanika Journal of Science & Technology, vol. 2, pp. 165–173, 1994. View at Google Scholar
  729. M. H. Lee and B. R. Ahmad Mahir, “Analisis berangka bagi taburan khi kuasa dua melalui persamaan terbitan sistem-S,” Sains Malaysiana, vol. 23, no. 4, pp. 129–147, 1994. View at Google Scholar
  730. Z. Y. Chen, “The S-system computation of non-central gamma distribution,” Journal of Statistical Computation and Simulation, vol. 75, no. 10, pp. 813–829, 2005. View at Publisher · View at Google Scholar · View at Scopus
  731. E. O. Voit, “The S-distribution. A tool for approximation and classification of univariate, unimodal probability distributions,” Biometrical Journal, vol. 34, pp. 855–878, 1992. View at Google Scholar
  732. E. O. Voit and S. Yu, “The S-distribution. Approximation of discrete distributions,” Biometrical Journal, vol. 36, pp. 205–219, 1994. View at Google Scholar
  733. E. O. Voit and S. Yu, “A new tool for distribution approximation and classification,” in Annual Meeting of the American Statistical Association, Boston, Mass, USA, 1992.
  734. Q. He, Completing the Kaplan-Meier estimator when there is extreme right censoring [Ph.D. Dissertation], Medical University of South Carolina, 1997.
  735. S. Yu and E. O. Voit, “A graphical classification of classic survival distributions,” in Proceedings of the International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, Boston, Mass, USA, 1994.
  736. S. Yu and E. O. Voit, “A simple, flexible failure model,” Biometrical Journal, vol. 37, pp. 595–609, 1995. View at Google Scholar
  737. S. S. Yu and E. O. Voit, “A graphical classification of survival distributions,” in Lifetime Data: Models in Reliability and Survival Analysis, N. P. Jewell, A. C. Kimber, M.-L.T. Lee, and G. A. Whitmore, Eds., pp. 385–392, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. View at Google Scholar
  738. Q. He and E. O. Voit, “Estimation and completion of survival data with piecewise linear models and S-distributions,” Journal of Statistical Computation and Simulation, vol. 75, no. 4, pp. 287–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  739. E. O. Voit and L. H. Schwacke, “Random number generation from right-skewed, symmetric, and left-skewed distributions,” Risk Analysis, vol. 20, no. 1, pp. 59–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  740. B. Hernández-Bermejo and A. Sorribas, “Analytical quantile solution for the S-distribution, random number generation and statistical data modeling,” Biometrical Journal, vol. 43, pp. 1007–1025, 2001. View at Google Scholar
  741. S. V. Aksenov and M. A. Savageau, “Mathematica and C Programs for Minimum Distance Estimation of the S Distribution and for Calculation of Goodness-of-Fit by Bootstrap,” Nimep of Moscow State University 2002.
  742. S. V. Aksenov and M. A. Savageau, “Statistical inference and modeling with the S-distribution,” 2001, http://arxiv.org/pdf/physics/0112046.pdf.
  743. W. L. Balthis, Application of hierarchical Monte Carlo simulation to the estimation of human exposure to mercury via consumption of King Mackerel (Scomberomorus cavalla) [Doctoral dissertation], Medical University of South Carolina, 1998.
  744. J. K. Bangerter, Uncertainty and variability analysis in the estimation of human exposure to mercury from seafood consumption using two-dimensional Monte Carlo simulations [Doctoral dissertation], Medical University of South Carolina, 1998.
  745. E. O. Voit and L. H. Schwacke, “Scalability properties of the S-distribution,” Biometrical Journal, vol. 40, no. 6, pp. 665–684, 1998. View at Google Scholar · View at Scopus
  746. E. O. Voit, “A maximum likelihood estimator for shape parameters of S-distributions,” Biometrical Journal, vol. 42, no. 4, pp. 471–479, 2000. View at Google Scholar · View at Scopus
  747. L. Yu and E. O. Voit, “Construction of bivariate S-distributions with copulas,” Computational Statistics and Data Analysis, vol. 51, no. 3, pp. 1822–1839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  748. J. M. Muiño, E. O. Voit, and A. Sorribas, “GS-distributions: a new family of distributions for continuous unimodal variables,” Computational Statistics and Data Analysis, vol. 50, no. 10, pp. 2769–2798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  749. J. Trujillano, J. M. Muiño, J. March, and A. Sorribas, “A more flexible parametric estimation of univariate reference intervals: a new method based on the GS-distribution,” Clinica Chimica Acta, vol. 379, no. 1-2, pp. 71–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  750. J. March, J. Trujillano, M. Tor, and A. Sorribas, “Estimating conditional distributions using a method based on S-distributions reference percentile curves for body mass index in Spanish children,” Growth, Development, and Aging, vol. 67, no. 2, pp. 59–72, 2003. View at Google Scholar · View at Scopus
  751. A. Sorribas, J. M. Muiño, and M. Rué, “Univariate parametric survival analysis using GS-distributions,” Statistics and Operations Research Transactions, vol. 30, no. 2, pp. 205–218, 2006. View at Google Scholar · View at Scopus
  752. E. O. Voit, L. H. Schwacke, and K. N. Simpson, “Application of S-distributions to resource use and cost data in clinical economic studies,” in Proceedings of the Annual Meeting of the American Statistical Association, Section on Survery Research methods, pp. 120–125, 2000.