Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 914187, 13 pages
http://dx.doi.org/10.5402/2013/914187
Review Article

Challenges in Enzymatic Route of Mannitol Production

1Biotechnology Department, Lovely Professional University, Punjab 144 401, India
2Institute of Technology, Banaras Hindu University, Varanasi 221 005, India

Received 19 June 2012; Accepted 10 August 2012

Academic Editors: L. Betancor, H. S. Garcia, and J. Jia

Copyright © 2013 Sheelendra Mangal Bhatt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Ghoreishi and R. G. Shahrestani, “Innovative strategies for engineering mannitol production,” Trends in Food Science and Technology, vol. 20, no. 6-7, pp. 263–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Soetaert, P. Vanhooren, and E. Vandamme, “Production of mannitol by fermentation methods,” Biotechnology, vol. 10, pp. 261–275, 1999. View at Google Scholar
  3. F. Devos, “Process for the production of mannitol,” U.S. Patent 5466-795, 1995.
  4. B. C. Saha and F. M. Racine, “Effects of pH and corn steep liquor variability on mannitol production by lactobacillus intermedius NRRL B-3693,” Applied Microbiology and Biotechnology, vol. 87, no. 2, pp. 553–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. W. Wisselink, R. A. Weusthuis, G. Eggink, J. Hugenholtz, and G. J. Grobben, “Mannitol production by lactic acid bacteria: a review,” International Dairy Journal, vol. 12, no. 2-3, pp. 151–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. B. C. Saha and F. M. Racine, “Biotechnological production of mannitol and its applications,” Applied Microbiology and Biotechnology, vol. 89, no. 4, pp. 879–891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Embuscado and S. K. Patil, “Erythritol,” in Food Science and Technology, vol. 17, pp. 235–254, Alternative Sweeteners, Marcel Dekker, New York, NY, USA, 2001. View at Google Scholar
  8. C. Minasian, C. Wallis, C. Metcalfe, and A. Bush, “Bronchial provocation testing with dry powder mannitol in children with cystic fibrosis,” Pediatric Pulmonology, vol. 43, no. 11, pp. 1078–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. J. Liaw, C. H. Chen, and Y. Z. Chen, “Hydrogenation of fructose over amorphous nano-catalysts of CoNiB and polymer-stabilized CoNiB,” Chemical Engineering Journal, vol. 157, no. 1, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. H. Stoop and H. Mooibroek, “Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress,” Applied and Environmental Microbiology, vol. 64, no. 12, pp. 4689–4696, 1998. View at Google Scholar · View at Scopus
  11. M. Howaldt, A. Gottlob, K. D. Kulbe, and H. Chmiel, “Simultaneous conversion of glucose/fructose mixtures in a membrane reactor,” Annals of the New York Academy of Sciences, vol. 542, pp. 400–405, 1989. View at Google Scholar · View at Scopus
  12. C. Bäumchen and S. Bringer-Meyer, “Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum,” Applied Microbiology and Biotechnology, vol. 76, no. 3, pp. 545–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Salou, P. Loubiere, and A. Pareilleux, “Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose,” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1459–1466, 1994. View at Google Scholar · View at Scopus
  14. J. W. Yun and D. H. Kim, “A comparative study of mannitol production by two lactic acid bacteria,” Journal of Fermentation and Bioengineering, vol. 85, no. 2, pp. 203–208, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Patra, S. K. Tomar, Y. S. Rajput, and R. Singh, “Characterization of mannitol producing strains of Leuconostoc species,” World Journal of Microbiology and Biotechnology, vol. 27, no. 4, pp. 933–939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Korakli and R. F. Vogel, “Purification and characterisation of mannitol dehydrogenase from Lactobacillus sanfranciscensis,” FEMS Microbiology Letters, vol. 220, no. 2, pp. 281–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Ojamo, H. Koivikko, and H. Heikkila, “Process for the production of mannitol by immobilized micro-organisms,” U.S. Patent 6602691 B1, 2003.
  18. A. R. Neves, A. Ramos, C. Shearman, M. J. Gasson, and H. Santos, “Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase,” Microbiology, vol. 148, no. 11, pp. 3467–3476, 2002. View at Google Scholar · View at Scopus
  19. P. Gaspar, A. R. Neves, A. Ramos, M. J. Gasson, C. A. Shearman, and H. Santos, “Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system,” Applied and Environmental Microbiology, vol. 70, no. 3, pp. 1466–1474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. R. Neves, W. A. Pool, J. Kok, O. P. Kuipers, and H. Santos, “Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR,” FEMS Microbiology Reviews, vol. 29, no. 3, pp. 531–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. F. M. Racine and B. C. Saha, “Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations,” Process Biochemistry, vol. 42, no. 12, pp. 1609–1613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. W. A. van der Donk and H. Zhao, “Recent developments in pyridine nucleotide regeneration,” Current Opinion in Biotechnology, vol. 14, no. 4, pp. 421–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Von Weymarn, K. Kiviharju, and M. Leisola, “High-level production of D-mannitol with membrane cell-recycle bioreactor,” Journal of Industrial Microbiology and Biotechnology, vol. 29, no. 1, pp. 44–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. I. A. El-Kady, M. H. Moubasher, and M. E. Mostafa, “Accumulation of sugar alcohols by filamentous fungi,” Folia Microbiologica, vol. 40, no. 5, pp. 481–486, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. L. N. Domelsmith, M. A. Klich, and W. R. Goynes, “Production of mannitol by fungi from cotton dust,” Applied and Environmental Microbiology, vol. 54, no. 7, pp. 1784–1790, 1988. View at Google Scholar · View at Scopus
  26. H. V. Hendriksen, T. E. Mathiasen, J. Adler-Nissen, J. C. Frisvad, and C. Emborg, “Production of mannitol by penicillium strains,” Journal of Chemical Technology and Biotechnology, vol. 43, no. 3, pp. 223–228, 1988. View at Google Scholar · View at Scopus
  27. P. Looten, S. Huchette, and M. H. Saniez, “Manufacture of mannitol by fermentation,” Chinese patent CN, 1, 064-311, 1992.
  28. L. Stankovic, V. Bilik, and M. Matulova, “Production of D-mannitol from D-aldopentoses by the yeast Rhodotorula minuta,” Folia Microbiologica, vol. 34, no. 6, pp. 511–514, 1989. View at Google Scholar · View at Scopus
  29. J. K. Lee, J. Y. Song, and S. Y. Kim, “Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production,” Biotechnology Progress, vol. 19, no. 3, pp. 768–775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Axelsson, “Lactic acid bacteria. Classification and physiology,” in Lactic acid Bacteria. Microbiological and Functional Aspects, A. Salminen Svon Wright and A. Ouwehand, Eds., pp. 1–66, Marcel Dekker, New York, NY, USA, 2004. View at Google Scholar
  31. W. P. Hammes, P. Stolz, and M. Ganzle, “Metabolism of lactobacilli in traditional sourdoughs,” Advanced Food Sciences, vol. 18, pp. 176–184, 1996. View at Google Scholar
  32. S. M. Bhatt and S. K. Srivastava, “Mannitol relieves substrate inhibition during glucose fermentation by L. delbrucekii due to shift in NADH/NAD+ ratio,” The Internet Journal of Bioengineering, vol. 3, no. 1, 2008. View at Google Scholar
  33. Y. M. A. Nakashimada, M. A. Rachman, T. Kakizono, and N. Nishio, “Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states,” International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1399–1405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Khan, A. Bhide, and R. Gadre, “Mannitol production from glycerol by resting cells of Candida magnoliae,” Bioresource Technology, vol. 100, no. 20, pp. 4911–4913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Helen, Sweeteners and Sugar Alternative in Food Technology, Wiley-Blackwell John & Sons, 2006.
  36. J. L. Snoep, M. Joost, D. T. Mattos, and O. M. Neijssel, “Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775,” FEMS Microbiology Letters, vol. 81, no. 1, pp. 63–66, 1991. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Yebra and G. Pérez-Martínez, “Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei,” Microbiology, vol. 148, no. 8, pp. 2351–2359, 2002. View at Google Scholar · View at Scopus
  38. A. Ragout, F. Sineriz, H. Diekmann, and G. F. de Valdez, “Shifts in the fermentation balance of Lactobacillus reuteri in the presence of glycerol,” Biotechnology Letters, vol. 18, no. 9, pp. 1105–1108, 1996. View at Google Scholar · View at Scopus
  39. A. Ramos and H. Santos, “Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2577–2585, 1996. View at Google Scholar · View at Scopus
  40. B. J. Koebmann, H. W. Andersen, C. Solem, and P. R. Jensen, “Experimental determination of control of glycolysis in Lactococcus lactis,” Antonie van Leeuwenhoek, vol. 82, no. 1–4, pp. 237–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. H. Schneider, F. Giffhorn, and S. Kaplan, “Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides,” Journal of General Microbiology, vol. 139, no. 10, pp. 2475–2484, 1993. View at Google Scholar · View at Scopus
  42. B. Nidetzky, D. Haltrich, K. Schmidt, H. Schmidt, A. Weber, and K. D. Kulbe, “Simultaneous enzymatic synthesis of mannitol and gluconic acid: II. Development of a continuous process for a coupled NAD(H)-dependent enzyme system,” Biocatalysis and Biotransformation, vol. 14, no. 1, pp. 47–65, 1996. View at Google Scholar · View at Scopus
  43. L. Viikari and M. Korhola, “Fructose metabolism in Zymomonas mobilis,” Applied Microbiology and Biotechnology, vol. 24, no. 6, pp. 471–476, 1986. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Adachi, H. Toyama, and K. Matsushita, “Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 2, pp. 402–407, 1999. View at Google Scholar · View at Scopus
  45. S. Liu, B. Saha, and M. Cotta, “Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis,” Applied Biochemistry and Biotechnology A, vol. 121, no. 1–3, pp. 391–401, 2005. View at Google Scholar · View at Scopus
  46. S. H. Song, N. Ahluwalia, Y. Leduc, L. T. J. Delbaere, and C. Vieille, “Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase,” Applied Microbiology and Biotechnology, vol. 81, no. 3, pp. 485–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Schroer, K. Peter Luef, F. S. Hartner, A. Glieder, and B. Pscheidt, “Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation,” Metabolic Engineering, vol. 12, no. 1, pp. 8–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Zhanga, Z. Huanga, C. Dua, Y. Lib, and Z. Caoa, “Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol,” Metabolic Engineering, vol. 11, no. 2, pp. 101–106, 2009. View at Google Scholar
  49. J. Thompson, “Sugar transport in the lactic acid bacteria,” in Sugar Transport and Metabolism in Gram-Positive Bacteri, J. Reizer and A. Peterkofsky, Eds., pp. 13–38, Ellis Horwood Limited Chichester, 1987. View at Google Scholar
  50. U. Nilsson and P. Radström, “Genetic localization and regulation of the maltose phosphorylase gene, maIP, in Lactococcus lactis,” Microbiology, vol. 147, no. 6, pp. 1565–1573, 2001. View at Google Scholar · View at Scopus
  51. R. Costenoble, L. Adler, C. Niklasson, and G. Lidén, “Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol,” FEMS Yeast Research, vol. 3, no. 1, pp. 17–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Aarnikunnas, K. Rönnholm, and A. Palva, “The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes,” Applied Microbiology and Biotechnology, vol. 59, no. 6, pp. 665–671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Kaup, S. Bringer-Meyer, and H. Sahm, “Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation,” Applied Microbiology and Biotechnology, vol. 64, no. 3, pp. 333–339, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Haghighatian, M. R. Mofid, M. K. Nekouei, P. Yaghmaei, and A. H. Tafreshi, “Isomalt production by cloning, purifying and expressing of the MDH gene from Pseudomonas fluorescens DSM 50106 in different strains of E. coli,” Pakistan Journal of Biological Sciences, vol. 11, no. 16, pp. 2001–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Bubner, M. Klimacek, and B. Nidetzky, “Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H),” FEBS Letters, vol. 582, no. 2, pp. 233–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. D. F. E. Richter and G. O. Kirst, “D-mannitol dehydrogenase and d-mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation,” Planta, vol. 170, no. 4, pp. 528–534, 1987. View at Publisher · View at Google Scholar · View at Scopus
  57. D. E. Quain and C. A. Boulton, “Growth and metabolism of mannitol by strains of Saccharomyces cerevisiae,” Journal of General Microbiology, vol. 133, no. 7, pp. 1675–1684, 1987. View at Google Scholar · View at Scopus
  58. M. Slatner, G. Nagl, D. Haltrich, K. D. Kulbe, and B. Nidetzky, “Enzymatic production of pure D-mannitol at high productivity,” Biocatalysis and Biotransformation, vol. 16, no. 5, pp. 351–363, 1998. View at Google Scholar · View at Scopus
  59. G. Hahn, B. Kaup, S. Bringer-Meyer, and H. Sahm, “A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene,” Archives of Microbiology, vol. 179, no. 2, pp. 101–107, 2003. View at Google Scholar · View at Scopus
  60. F. Heuser, K. Marin, B. Kaup, S. Bringer, and H. Sahm, “Improving d-mannitol productivity of Escherichia coli: impact of NAD, CO2 and expression of a putative sugar permease from Leuconostoc pseudomesenteroides,” Metabolic Engineering, vol. 11, no. 3, pp. 178–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Wei, M. B. Goldberg, V. Burland et al., “Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T,” Infection and Immunity, vol. 71, no. 5, pp. 2775–2786, 2003. View at Google Scholar · View at Scopus
  62. C. H. Chiu, P. Tang, C. C. Hu et al., “The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen,” Nucleic Acids Research, vol. 33, no. 5, pp. 1690–1698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Song, Z. Tong, J. Wang et al., “Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans,” DNA Research, vol. 11, no. 3, pp. 179–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Otte, A. Scholle, S. Turgut, and J. W. Lengeler, “Mutations which uncouple transport and phosphorylation in the D-mannitol phosphotransferase system of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14,” Journal of Bacteriology, vol. 185, no. 7, pp. 2267–2276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Makino, K. Oshima, K. Kurokawa et al., “Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae,” The Lancet, vol. 361, no. 9359, pp. 743–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Tan, S. Clancy, M. Borovilos et al., “The mannitol operon repressor MtlR belongs to a new class of transcription regulators in bacteria,” Journal of Biological Chemistry, vol. 284, no. 52, pp. 36670–36679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. A. Henstra, M. Tuinhof, R. H. Duurkens, and G. T. Robillard, “The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system: a DNA-binding protein, regulated by HPr and IICB(mtl)-dependent phosphorylation,” Journal of Biological Chemistry, vol. 274, no. 8, pp. 4754–4763, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. F. M. Racine and B. C. Saha, “Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations,” Process Biochemistry, vol. 42, no. 12, pp. 1609–1613, 2007. View at Publisher · View at Google Scholar · View at Scopus