Table of Contents
ISRN Oncology
Volume 2013, Article ID 918207, 8 pages
Research Article

Beyond the Limits of Oxygen: Effects of Hypoxia in a Hormone-Independent Prostate Cancer Cell Line

1Biophysics Unit, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
2CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
3Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
4Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
5Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Received 24 June 2013; Accepted 13 August 2013

Academic Editors: Y. Akiyama, W. Kildal, and L. Mutti

Copyright © 2013 A. C. Mamede et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Prostate cancer (PCa) has a high incidence worldwide. One of the major causes of PCa resistance is intratumoral hypoxia. In solid tumors, hypoxia is strongly associated with malignant progression and resistance to therapy, which is an indicator of poor prognosis. The antiproliferative effect and induced death caused by doxorubicin, epirubicin, cisplatin, and flutamide in a hormone-independent PCa cell line will be evaluated. The hypoxia effect on drug resistance to these drugs, as well as cell proliferation and migration, will be also analyzed. All drugs induced an antiproliferative effect and also cell death in the cell line under study. Hypoxia made the cells more resistant to all drugs. Moreover, our results reveal that long time cell exposure to hypoxia decreases cellular proliferation and migration. Hypoxia can influence cellular resistance, proliferation, and migration. This study shows that hypoxia may be a key factor in the regulation of PCa.