Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 926025, 10 pages
http://dx.doi.org/10.5402/2013/926025
Research Article

Variations in the Regulatory Region of Alpha S1-Casein Milk Protein Gene among Tropically Adapted Indian Native (Bos Indicus) Cattle

1Cattle Genomics Laboratory, National Bureau of Animal Genetic Resources, P.O. Box 129, Karnal, Haryana 132001, India
2Department of Biotechnology, Panjab University, Chandigarh 160014, India
3Buffalo Genomics Laboratory, National Bureau of Animal Genetic Resources, P.O. Box 129, Karnal, Haryana 132001, India

Received 30 September 2012; Accepted 17 October 2012

Academic Editors: R. Chen, R. Greiner, S.-B. Hong, and S. Pan

Copyright © 2013 Amit Kishore et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Farrell Jr., R. Jimenez-Flores, G. T. Bleck et al., “Nomenclature of the proteins of cows' milk—sixth revision,” Journal of Dairy Science, vol. 87, no. 6, pp. 1641–1674, 2004. View at Google Scholar · View at Scopus
  2. A. M. Caroli, S. Chessa, and G. J. Erhardt, “Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition,” Journal of Dairy Science, vol. 92, no. 11, pp. 5335–5352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. M. Prinzenberg, C. Weimann, H. Brandt et al., “Polymorphism of the bovine CSN1S1 promoter: linkage mapping, intragenic haplotypes, and effects on milk production traits,” Journal of Dairy Science, vol. 86, no. 8, pp. 2696–2705, 2003. View at Google Scholar · View at Scopus
  4. M. Szymanowska, N. Strzalkowska, E. Siadkowska, J. Krzyzewski, Z. Ryniewicz, and L. Zwierzchowski, “Effects of polymorphism at 5-noncoding regions (promoters) of αS1- and αS2-casein genes on selected milk production traits in Polish Black-and White cows,” Animal Science Papers and Reports, vol. 21, pp. 97–108, 2003. View at Google Scholar
  5. J. M. L. Heck, A. Schennink, H. J. F. van Valenberg et al., “Effects of milk protein variants on the protein composition of bovine milk,” Journal of Dairy Science, vol. 92, no. 3, pp. 1192–1202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Martin, M. Szymanowska, L. Zwierzchowski, and C. Leroux, “The impact of genetic polymorphisms on the protein composition of ruminant milks,” Reproduction Nutrition Development, vol. 42, no. 5, pp. 433–459, 2002. View at Google Scholar · View at Scopus
  7. M. Szymanowska, T. Malewski, and L. Zwierzchowski, “Transcription factor binding to variable nucleotide sequences in 5-flanking regions of bovine casein genes,” International Dairy Journal, vol. 14, no. 2, pp. 103–115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Malewski, “Computer analysis of distribution of putative cis- and trans- regulatory elements in milk protein gene promoters,” BioSystems, vol. 45, no. 1, pp. 29–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Szymanowska, E. Siadkowska, M. Łukaszewicz, and L. Zwierzchowski, “Association of nucleotide-sequence polymorphism in the 5'-flanking regions of bovine casein genes with casein content in cow's milk,” Lait, vol. 84, no. 6, pp. 579–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. E. M. Prinzenberg, H. Brandt, J. Bennewitz, E. Kalm, and G. Erhardt, “Allele frequencies for SNPs in the αs1-casein gene (CSN1S1) 5 flanking region in European cattle and association with economic traits in German Holstein,” Livestock Production Science, vol. 98, no. 1-2, pp. 155–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sanders, J. Bennewitz, N. Reinsch et al., “Characterization of the DGAT1 mutations and the CSN1S1 promoter in the German Angeln dairy cattle population,” Journal of Dairy Science, vol. 89, no. 8, pp. 3164–3174, 2006. View at Google Scholar · View at Scopus
  12. E. M. Ibeagha-Awemu, E. M. Prinzenberg, and G. Erhardt, “High variability of milk protein genes in Bos indicus cattle breeds of Cameroon and Nigeria and characterization of a new αs1-casein promoter allele,” Journal of Dairy Research, vol. 72, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. W. Kuss, J. Gogol, H. Bartenschlager, and H. Geldermann, “Polymorphic AP-1 binding site in bovine CSN1S1 shows quantitative differences in protein binding associated with milk protein expression,” Journal of Dairy Science, vol. 88, no. 6, pp. 2246–2252, 2005. View at Google Scholar · View at Scopus
  14. A. W. Kuss, T. Peischl, J. Gogol, H. Bartenschlager, and H. Geldermann, “αS1-casein yield and milk composition are associated with a polymorphic regulatory element in the bovine αS1-casein gene,” in Indicators of Milk and Beef Quality, J. F. Hocquette and S. Gigli, Eds., pp. 301–305, EAAP Publication, 2005. View at Google Scholar
  15. W. L. Bai, R. H. Yin, Q. L. Dou et al., “A single nucleotide polymorphism and sequence analysis of CSN1S1 gene promoter region in Chinese BOS Grunniens (YAK),” Animal Biotechnology, vol. 21, no. 1, pp. 36–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Chianese, M. Quarto, F. Pizzolongo et al., “Occurrence of genetic polymorphism at the αs1-casein locus in Mediterranean water buffalo milk,” International Dairy Journal, vol. 19, no. 4, pp. 181–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Ramunno, G. Cosenza, A. Rando et al., “The goat αS1-casein gene: gene structure and promoter analysis,” Gene, vol. 334, no. 1-2, pp. 105–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Bhure and B. Sharma, “The PCR amplification, sequencing and computer-aided analysis of ovine αS1-casein gene promoter,” Indian Journal of Biotechnology, vol. 7, no. 4, pp. 478–481, 2008. View at Google Scholar · View at Scopus
  19. T. A. Schild and H. Geldermann, “Variants within the 5-flanking regions of bovine milk-protein-encoding genes. III. Genes encoding the Ca-sensitive caseins αs1, αs2 and β,” Theoretical and Applied Genetics, vol. 93, no. 5-6, pp. 887–893, 1996. View at Google Scholar · View at Scopus
  20. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1989.
  21. A. E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and E. Wingender, “MATCH: a tool for searching transcription factor binding sites in DNA sequences,” Nucleic Acids Research, vol. 31, no. 13, pp. 3576–3579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Matys, E. Fricke, R. Geffers et al., “TRANSFAC: transcriptional regulation, from patterns to profiles,” Nucleic Acids Research, vol. 31, no. 1, pp. 374–378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Grabe, “AliBaba2: context specific identification of transcription factor binding sites,” In Silico Biology, vol. 2, no. 1, pp. S1–S15, 2002. View at Google Scholar · View at Scopus
  24. M. Stephens and P. Scheet, “Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation,” American Journal of Human Genetics, vol. 76, no. 3, pp. 449–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Stephens, N. J. Smith, and P. Donnelly, “A new statistical method for haplotype reconstruction from population data,” American Journal of Human Genetics, vol. 68, no. 4, pp. 978–989, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Librado and J. Rozas, “DnaSP v5: a software for comprehensive analysis of DNA polymorphism data,” Bioinformatics, vol. 25, no. 11, pp. 1451–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Excoffier and H. E. L. Lischer, “Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows,” Molecular Ecology Resources, vol. 10, no. 3, pp. 564–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar
  29. M. Rijnkels, P. M. Kooiman, P. J. A. Krimpenfort, H. A. De Boer, and F. R. Pieper, “Expression analysis of the individual bovine β-, α(s2)- and κ-casein genes in transgenic mice,” Biochemical Journal, vol. 311, no. 3, pp. 929–937, 1995. View at Google Scholar · View at Scopus
  30. D. Koczan, G. Hobom, and H. M. Seyfert, “Characterization of the bovine αS1-casein gene C-allele, based on a MaeIII polymorphism,” Animal Genetics, vol. 24, no. 1, p. 74, 1993. View at Google Scholar · View at Scopus