Table of Contents
ISRN Thermodynamics
Volume 2013, Article ID 935481, 14 pages
Research Article

Perturbation Solution for Radiating Viscoelastic Fluid Flow and Heat Transfer with Convective Boundary Condition in Nonuniform Channel with Hall Current and Chemical Reaction

Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, 577 451, India

Received 24 May 2013; Accepted 4 July 2013

Academic Editors: G. L. Aranovich, C. D. Daub, and A. Ghoufi

Copyright © 2013 B. J. Gireesha and B. Mahanthesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A mathematical analysis has been performed for heat and mass transfer of a time-dependent MHD flow of an electrically conducting viscoelastic fluid in nonuniform vertical channel with convective boundary condition. The fluid flow is considered between a vertical long wavy wall and a parallel flat wall saturated with the porous medium. The effects of thermal radiation, heat absorption, chemical reaction, and Hall current are taken into account. The prevailing nonlinear partial differential equations are derived by considering Boussinesq approximation, and the same equations are solved analytically using perturbation technique. Further the expressions for skin friction, Nusselt number, and Sherwood number are presented. The effects of various pertinent parameters on different flow fields are analyzed graphically and tabularly. It is found that effects of Hall parameter and Biot number are unfavorable on velocity profiles, but this trend is reverse for the effect of thermal and solutal Grashof numbers. The expressions of different flow fields satisfy the imposed boundary conditions, which is shown in all graphs; this implies accuracy of the solution.