Table of Contents
ISRN Spectroscopy
Volume 2013, Article ID 935819, 6 pages
http://dx.doi.org/10.1155/2013/935819
Research Article

Sensitive Spectrophotometric Determinations of Paracetamol and Protriptyline HCl Using 3-Chloro-7-hydroxy-4-methyl-2H-chromen-2-one

Department of Post Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199, India

Received 26 June 2013; Accepted 15 July 2013

Academic Editors: C. Alvarez-Lorenzo and A. A. Ensafi

Copyright © 2013 Kumble Divya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Németh, P. Jankovics, J. Németh-Palotás, and H. Koszegi-Szalai, “Determination of paracetamol and its main impurity 4-aminophenol in analgesic preparations by micellar electrokinetic chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 4-5, pp. 746–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Afkhami, N. Sarlak, and A. R. Zarei, “Spectrophotometric determination of salicylamide and paracetamol in biological samples and pharmaceutical formulations by a differential kinetic method,” Acta Chimica Slovenica, vol. 53, no. 3, pp. 357–362, 2006. View at Google Scholar · View at Scopus
  3. Á. N. Mhaoláin, B. D. Kelly, E. G. Breen, and P. Casey, “Legal limits for paracetamol sales,” The Lancet, vol. 369, no. 9570, p. 1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. American Society of Health-System Pharmacists, AHFS Drug Information, 2002.
  5. F. Sériès and Y. Cormier, “Effects of protriptyline on diurnal and nocturnal oxygenation in patients with chronic obstructive pulmonary disease,” Annals of Internal Medicine, vol. 113, no. 7, pp. 507–511, 1990. View at Google Scholar · View at Scopus
  6. Ultram, Protriptyline, Ortho-McNeil Pharmaceutical, 2007.
  7. J. Kirchheiner, K. Nickchen, M. Bauer et al., “Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response,” Molecular Psychiatry, vol. 9, no. 5, pp. 442–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kartal, “LC method for the analysis of paracetamol, caffeine and codeine phosphate in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 26, no. 5-6, pp. 857–864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Grujić, T. Vasiljević, and M. Laušević, “Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry,” Journal of Chromatography A, vol. 1216, no. 25, pp. 4989–5000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. El-Kommos and K. M. Emara, “Determination of phenyltoloxamine salicylamide, caffeine, paracetamol, codeine and phenacetin by HPLC,” Talanta, vol. 36, no. 6, pp. 678–679, 1989. View at Google Scholar · View at Scopus
  11. W. Ruengsitagoon, S. Liawruangrath, and A. Townshend, “Flow injection chemiluminescence determination of paracetamol,” Talanta, vol. 69, no. 4, pp. 976–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. L. Alves and R. J. Poppi, “Simultaneous determination of acetylsalicylic acid, paracetamol and caffeine using solid-phase molecular fluorescence and parallel factor analysis,” Analytica Chimica Acta, vol. 642, no. 1-2, pp. 212–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Pejić, L. Kolar-Anić, S. Anić, and D. Stanisavljev, “Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 2, pp. 610–615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. W. Street Jr. and G. H. Schenk, “Spectrofluorometric determination of acetylsalicylic acid, salicylamide, and salicylic acid as an impurity in pharmaceutical preparations,” Journal of Pharmaceutical Sciences, vol. 70, no. 6, pp. 641–646, 1981. View at Google Scholar · View at Scopus
  15. U. Huber, Analysis of Tricyclic Antidepressants By HPLC, Agilent Technologies, 1998.
  16. P. Koteel, R. E. Mullins, and R. H. Gadsden, “Sample preparation and liquid-chromatographic analysis for tricyclic antidepressants in serum,” Clinical Chemistry, vol. 28, no. 3, pp. 462–466, 1982. View at Google Scholar · View at Scopus
  17. S. J. Bannister, V. D. W. S. van der Wal, J. W. Dolan, and L. R. Snyder, “Liquid-chromatographic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the technicon “FAST-LC” system,” Clinical Chemistry, vol. 27, no. 6, pp. 849–855, 1981. View at Google Scholar · View at Scopus
  18. F. A. Beierle and R. W. Hubbard, “Liquid chromatographic separation of antidepressant drugs: I. Tricyclics,” Therapeutic Drug Monitoring, vol. 5, no. 3, pp. 279–292, 1983. View at Google Scholar · View at Scopus
  19. M. E. Georgiou, C. A. Georgiou, and M. A. Koupparis, “Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: tricyclic antidepressant drugs with α-cyclodextrin,” Analyst, vol. 124, no. 3, pp. 391–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ruiz Medina, M. L. Fernández de Córdova, and A. Molina Díaz, “A very simple resolution of the mixture paracetamol and salicylamide by flow injection-solid phase spectrophotometry,” Analytica Chimica Acta, vol. 394, no. 2-3, pp. 149–158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. G. V. S. R. Kumar, V. R. Devi, K. V. D. Lakshmi, and L. R. Bs Murty, “Detection and spectrophotometric determination of paracetamol using NBS,” Analytical Chemistry, vol. 12, no. 2, pp. 62–65, 2013. View at Google Scholar
  22. L. Nejem, S. Antakli, and H. Bagdashe, “Spectrophotometric determination of paracetamol and orfinadrin citrate in tablets,” Asian Journal of Chemistry, vol. 2, no. 25, pp. 1079–1082, 2013. View at Google Scholar
  23. K. Divya and B. Narayana, “New visible spectrophotometric methods for the determination of protriptyline HCl in bulk and pharmaceutical formulations,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 9, pp. 4352–4358, 2012. View at Google Scholar
  24. G. D. Christian and J. E. O'Rilly, “Jobs method,” in Instrumental Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1980. View at Google Scholar
  25. International Conference on Harmonization (ICH) Guidelines, http://www.ich.org/.