Table of Contents
ISRN Oncology
Volume 2013, Article ID 946945, 7 pages
http://dx.doi.org/10.1155/2013/946945
Research Article

Differential Prognostic Indicators for Locoregional Recurrence, Distant Recurrence, and Death of Breast Cancer

1Clinical Epidemiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Nursing, Uttaradit Hospital, Uttaradit 53000, Thailand
3Department of General Surgery, Nakhon Sawan General Hospital, Nakhon Sawan 60000, Thailand
4Department of General Surgery, Uttaradit General Hospital, Uttaradit 53000, Thailand
5Department of General Surgery, Lampang General Hospital, Lampang 52000, Thailand
6Clinical Epidemiology Society, Chiang Mai 50200, Thailand

Received 25 August 2013; Accepted 14 October 2013

Academic Editors: R. L. Aft and G. Gatti

Copyright © 2013 Rungnapa Chairat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. K. Edwards, M. L. Brown, P. A. Wingo et al., “Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment,” Journal of the National Cancer Institute, vol. 97, no. 19, pp. 1407–1427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Bureau of Policy and Strategy, The Ministry of Public Health, Statistical Thailand, 2011.
  3. M. Overgaard, H. M. Nielsen, and J. Overgaard, “Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b & c randomized trials,” Radiotherapy and Oncology, vol. 82, no. 3, pp. 247–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Puttisri, “Recurrence of breast carcinoma in Sawanpracharak hospital, NakornSawan,” Sawanpracharak Medical Journal, vol. 4, no. 2, pp. 553–564, 2007. View at Google Scholar
  5. A. Wachirapunt, “Prognosticating factors and overall survival in breast cancer patients in Maharaj Nakhon Si Thammarat Hospital,” Songklanagarind Medical Journal, vol. 27, no. 4, pp. 313–322, 2009. View at Google Scholar
  6. W. L. Lu, L. Jansen, W. J. Post, J. Bonnema, J. C. Van De Velde, and G. H. De Bock, “Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: a meta-analysis,” Breast Cancer Research and Treatment, vol. 114, no. 3, pp. 403–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Akram and S. A. Siddiqui, “Breast cancer management: past, present and evolving,” Indian Journal of Cancer, vol. 49, no. 3, pp. 277–282, 2012. View at Google Scholar
  8. 2008, http://thailand.digitaljournals.org/index.php/JTSTRO/article/view/7162.
  9. S. H. Cheng, C.-F. Horng, J. L. Clarke et al., “Prognostic index score and clinical prediction model of local regional recurrence after mastectomy in breast cancer patients,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 5, pp. 1401–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. T. Truong, S. O. Jones, H. A. Kader et al., “Patients with t1 to t2 breast cancer with one to three positive nodes have higher local and regional recurrence risks compared with node-negative patients after breast-conserving surgery and whole-breast radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 2, pp. 357–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Lee, S. I. L. Kim, H. S. Park, J. S. Lee, S. Park, and B.-W. Park, “The impact of local and regional recurrence on distant metastasis and survival in patients treated with breast conservation therapy,” Journal of Breast Cancer, vol. 14, no. 3, pp. 191–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Lunn and D. McNeil, “Applying Cox regression to competing risks,” Biometrics, vol. 51, no. 2, pp. 524–532, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Cheng, C.-F. Horng, M. West et al., “Genomic prediction of locoregional recurrence after mastectomy in breast cancer,” Journal of Clinical Oncology, vol. 24, no. 28, pp. 4594–4602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Carreño, J. M. Del Casar, M. D. Corte et al., “Local recurrence after mastectomy for breast cancer: analysis of clinicopathological, biological and prognostic characteristics,” Breast Cancer Research and Treatment, vol. 102, no. 1, pp. 61–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Fodor, T. Major, C. Polgár, Z. Orosz, Z. Sulyok, and M. Kásler, “Prognosis of patients with local recurrence after mastectomy or conservative surgery for early-stage invasive breast cancer,” The Breast, vol. 17, no. 3, pp. 302–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Hölzel, R. T. Emeny, and J. Engel, “True local recurrences do not metastasize,” Cancer and Metastasis Reviews, vol. 30, no. 2, pp. 161–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. A. Dinshaw, A. N. Budrukkar, R. F. Chinoy et al., “Profile of prognostic factors in 1022 Indian women with early-stage breast cancer treated with breast-conserving therapy,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 4, pp. 1132–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. http://breastcancer.about.com/od/Stages-of-Breast-Cancer/a/Stage-3-Breast-Cancer.htm.
  19. S. E. Rosa Mendoza, E. Moreno, and B. P. Caguioa, “Predictors of early distant metastasis in women with breast cancer,” Journal of Cancer Research and Clinical Oncology, vol. 139, no. 4, pp. 645–652, 2013. View at Google Scholar
  20. J. E. Lang and G. V. Babiera, “Locoregional resection in stage IV breast cancer: tumor biology, molecular and clinical perspectives,” Surgical Clinics of North America, vol. 87, no. 2, pp. 527–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Anastasov, I. Hofig, G. I. Vasconcelloset et al., “Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells,” Radiation Oncology, vol. 7, pp. 206–217, 2012. View at Google Scholar
  22. C. Lagadec, E. Vlashi, L. Della Donna, C. Dekmezian, and F. Pajonk, “Radiation-induced reprogramming of breast cancer cells,” Stem Cells, vol. 30, no. 5, pp. 833–844, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Marcato, C. A. Dean, P. Da et al., “Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis,” Stem Cells, vol. 29, no. 1, pp. 32–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Printz, “Radiation treatment generates therapy-resistant cancer stem cells from less aggressive breast cancer cells,” Cancer, vol. 118, no. 13, p. 3225, 2012. View at Google Scholar
  25. M. Trovo, E. Durofil, J. Polesel et al., “Locoregional failure in early-stage breast cancer patients treated with radical mastectomy and adjuvant systemic therapy: which patients benefit from postmastectomy irradiation?” International Journal of Radiation Oncology, Biology, Physics, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. B. S. Yadav, S. C. Sharma, R. Singh, G. Singh, and V. Kumar, “Postmastectomy radiation and survival in patients with breast cancer,” Journal of Cancer Research and Therapeutics, vol. 3, no. 4, pp. 218–224, 2007. View at Google Scholar · View at Scopus
  27. S. Glück, “The prevention and management of distant metastases in women with breast cancer,” Cancer Investigation, vol. 25, no. 1, pp. 6–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Yildirim and U. Berberoglu, “Postmastectomy locoregional recurrence and distant metastasis in breast carcinoma patients,” Breast, vol. 17, no. 4, pp. 367–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. F. Schoppmann, G. Bayer, K. Aumayr et al., “Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer,” Annals of Surgery, vol. 240, no. 2, pp. 306–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. P. T. Truong, C. M. Yong, F. Abnousi et al., “Lymphovascular invasion is associated with reduced locoregional control and survival in women with node-negative breast cancer treated with mastectomy and systemic therapy,” Journal of the American College of Surgeons, vol. 200, no. 6, pp. 912–921, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Paik, G. Tang, S. Shak et al., “Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer,” Journal of Clinical Oncology, vol. 24, no. 23, pp. 3726–3734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. von Minckwitz, M. Untch, and S. Loibl, “Update on neoadjuvant/preoperative therapy of breast cancer: experiences from the German breast group,” Current Opinion in Obstetrics & Gynecology2013, vol. 25, no. 1, pp. 66–73.