Table of Contents
ISRN Applied Mathematics
Volume 2013, Article ID 953792, 7 pages
http://dx.doi.org/10.1155/2013/953792
Review Article

The State of Charge Estimating Methods for Battery: A Review

Department of Electrical Engineering, St. John's University, 499, Sec. 4, Tam King Road, Tamsui District, New Taipei City 25135, Taiwan

Received 12 May 2013; Accepted 5 July 2013

Academic Editors: M. Brünig and E. Di Nardo

Copyright © 2013 Wen-Yeau Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Y. Chang, “State of charge estimation for LiFePO4 battery using artificial neural network,” International Review of Electrical Engineering, vol. 7, no. 5, pp. 5874–5800, 2012. View at Google Scholar
  2. Z. H. Rao, S. F. Wang, and G. Q. Zhang, “Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery,” Energy Conversion and Management, vol. 52, no. 12, pp. 3408–3414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. W. He, R. Xiong, and H. Q. Guo, “Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles,” Applied Energy, vol. 89, no. 1, pp. 413–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. H. Cai, G. F. Liu, and J. Luo, “Research state of charge estimation tactics of nickel-hydrogen battery,” in Proceedings of the International Symposium on Intelligence Information Processing and Trusted Computing (IPTC '10), pp. 184–187, Huanggang, China, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Watrin, B. Blunier, and A. Miraoui, “Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation,” in Proceedings of IEEE Transportation Electrification Conference and Expo, pp. 1–6, Dearborn, Mich, USA, June 2012. View at Publisher · View at Google Scholar
  6. A. A. A. Elgammal and A. M. Sharaf, “Self-regulating particle swarm optimised controller for (photovoltaic-fuel cell) battery charging of hybrid electric vehicles,” IET Electrical Systems in Transportation, vol. 2, no. 2, pp. 77–89, 2012. View at Publisher · View at Google Scholar
  7. V. Prajapati, H. Hess, E. J. William et al., “A literature review of state of-charge estimation techniques applicable to lithium poly-carbon monoflouride (LI/CFx) battery,” in Proceedings of the India International Conference on Power Electronics (IICPE '10), pp. 1–8, New Delhi, India, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Chiasson and B. Vairamohan, “Estimating the state of charge of a battery,” IEEE Transactions on Control Systems Technology, vol. 13, no. 3, pp. 465–470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “State-of-charge estimation for lead-acid batteries based on dynamic open-circuit voltage,” in Proceedings of the 2nd IEEE International Power and Energy Conference (PECon '08), pp. 972–976, Johor Bahru, Malaysia, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2550–2557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Dong, J. Li, F. Zhao et al., “Analysis on the influence of measurement error on state of charge estimation of LiFePO4 power battery,” in Proceedings of the International Conference on Materials for Renewable Energy and Environment (ICMREE '11), pp. 644–649, Shanghai, China, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Abu-Sharkh and D. Doerffel, “Rapid test and non-linear model characterisation of solid-state lithium-ion batteries,” Journal of Power Sources, vol. 130, no. 1-2, pp. 266–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Lee, J. Kim, J. Lee, and B. H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” Journal of Power Sources, vol. 185, no. 2, pp. 1367–1373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. H. Anbuky and P. E. Pascoe, “VRLA battery state-of-charge estimation in telecommunication power systems,” IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 565–573, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sato and A. Kawamura, “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery,” in Proceedings of the Power Conversion Conference, pp. 565–570, Osaka, Japan, April 2002. View at Publisher · View at Google Scholar
  16. S. Rodrigues, N. Munichandraiah, and A. K. Shukla, “A review of state-of-charge indication of batteries by means of A.C. impedance measurements,” Journal of Power Sources, vol. 87, no. 1-2, pp. 12–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries,” Journal of Power Sources, vol. 70, no. 1, pp. 59–69, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Li, J. F. Wu, H. Y. Wang, and G. C. Li, “Prediction of state of charge of lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory,” in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA '10), pp. 684–688, Taichung, Taiwan, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Bundy, M. Karlsson, G. Lindbergh, and A. Lundqvist, “An electrochemical impedance spectroscopy method for prediction of the state of charge of a nickel-metal hydride battery at open circuit and during discharge,” Journal of Power Sources, vol. 72, no. 2, pp. 118–125, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced Coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Applied Energy, vol. 86, no. 9, pp. 1506–1511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Weigert, Q. Tian, and K. Lian, “State-of-charge prediction of batteries and battery-supercapacitor hybrids using artificial neural networks,” Journal of Power Sources, vol. 196, no. 8, pp. 4061–4066, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Linda, E. J. William, M. Huff et al., “Intelligent neural network implementation for SOCI development of Li/CFx batteries,” in Proceedings of the 2nd International Symposium on Resilient Control Systems (ISRCS '09), pp. 57–62, Idaho Falls, Idaho, USA, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Guo, J. Jiang, and Z. Wang, “Estimating the state of charge for Ni-MH battery in HEV by RBF neural network,” in Proceedings of the International Workshop on Intelligent Systems and Applications (ISA '09), pp. 1–4, Wuhan, China, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. He, D. Huang, and D. Feng, “The prediction of SOC of lithium batteries and varied pulse charge,” in Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA '09), pp. 1578–1582, Changchun, China, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology,” Journal of Power Sources, vol. 80, no. 1-2, pp. 293–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Singh, R. Vinjamuri, X. Wang, and D. Reisner, “Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators,” Journal of Power Sources, vol. 162, no. 2, pp. 829–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Singh, C. Fennie Jr., and D. Reisner, “Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries,” Journal of Power Sources, vol. 136, no. 2, pp. 322–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Malkhandi, “Fuzzy logic-based learning system and estimation of state-of-charge of lead-acid battery,” Engineering Applications of Artificial Intelligence, vol. 19, no. 5, pp. 479–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Hansen and C. J. Wang, “Support vector based battery state of charge estimator,” Journal of Power Sources, vol. 141, no. 2, pp. 351–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. H. Li, W. Y. Wang, S. F. Su, and Y. S. Lee, “A merged fuzzy neural network and its applications in battery state-of-charge estimation,” IEEE Transactions on Energy Conversion, vol. 22, no. 3, pp. 697–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. S. Lee, W. Y. Wang, and T. Y. Kuo, “Soft computing for battery state-of-charge (BSOC) estimation in battery string systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 229–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Xu, J. P. Wang, and Q. S. Chen, “Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model,” Energy Conversion and Management, vol. 53, no. 1, pp. 33–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. W. Yatsui and H. Bai, “Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid electric vehicles using pulse charging,” in Proceedings of the 7th IEEE Vehicle Power and Propulsion Conference (VPPC '11), pp. 1–5, Chicago, Ill, USA, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Barbarisi, F. Vasca, and L. Glielmo, “State of charge Kalman filter estimator for automotive batteries,” Control Engineering Practice, vol. 14, no. 3, pp. 267–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Zhang and C. Xia, “State-of-charge estimation of valve regulated lead acid battery based on multi-state unscented Kalman filter,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 3, pp. 472–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Sun, X. Hu, Y. Zou, and S. Li, “Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles,” Energy, vol. 36, no. 5, pp. 3531–3540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Pop, H. J. Bergveld, P. H. L. Notten, J. H. G. Op het Veld, and P. P. L. Regtien, “Accuracy analysis of the state-of-charge and remaining run-time determination for lithium-ion batteries,” Measurement, vol. 42, no. 8, pp. 1131–1138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wang, B. Cao, Q. Chen, and F. Wang, “Combined state of charge estimator for electric vehicle battery pack,” Control Engineering Practice, vol. 15, no. 12, pp. 1569–1576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Kim and B. H. Cho, “State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4249–4260, 2011. View at Publisher · View at Google Scholar · View at Scopus