Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 985685, 7 pages
http://dx.doi.org/10.5402/2013/985685
Research Article

Optimization of Cellulase Production from Bacteria Isolated from Soil

Department of Biotechnology, Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India

Received 18 December 2012; Accepted 5 January 2013

Academic Editors: D. Pant and A. Tiessen

Copyright © 2013 Sonia Sethi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Tomme, R. A. J. Warren, and N. R. Gilkes, “Cellulose hydrolysis by bacteria and fungi,” Advances in Microbial Physiology, vol. 37, pp. 1–81, 1995. View at Google Scholar · View at Scopus
  2. M. Jarvis, “Cellulose stacks up,” Nature, vol. 426, no. 6967, pp. 611–612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-H. P. Zhang and L. R. Lynd, “Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 797–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Bahkali, “Influence of various carbohydrates on xylanase production in Verticillium tricorpus,” Bioresource Technology, vol. 57, no. 3, pp. 265–268, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Magnelli and F. Forchiassin, “Regulation of the cellulase complex production by Saccobolus saccoboloides: induction and repression by carbohydrates,” Mycologia, vol. 91, no. 2, pp. 359–364, 1999. View at Google Scholar · View at Scopus
  6. C. S. Shin, J. P. Lee, J. S. Lee, and S. C. Park, “Enzyme production of Trichoderma reesei rut C-30 on various lignocellulosic substrates,” Applied Biochemistry and Biotechnology A, vol. 84–86, pp. 237–245, 2000. View at Google Scholar · View at Scopus
  7. G. Immanuel, R. Dhanusha, P. Prema, and A. Palavesam, “Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment,” International Journal of Environmental Science and Technology, vol. 3, no. 1, pp. 25–34, 2006. View at Google Scholar · View at Scopus
  8. M. K. Bhat, “Cellulases and related enzymes in biotechnology,” Biotechnology Advances, vol. 18, no. 5, pp. 355–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nakamura and K. Kppamura, “Isolation and identification of crystalline cellulose hydrolysing bacterium and its enzymatic properties,” Journal of Fermentation Technology, vol. 60, no. 4, pp. 343–348, 1982. View at Google Scholar
  10. Y. J. Lee, B. K. Kim, B. H. Lee et al., “Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull,” Bioresource Technology, vol. 99, no. 2, pp. 378–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Saha, R. N. Roy, S. K. Sen, and A. K. Ray, “Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes),” Aquaculture Research, vol. 37, no. 4, pp. 380–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Nishida, K. I. Suzuki, Y. Kumagai, H. Tanaka, A. Inoue, and T. Ojima, “Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus,” Biochimie, vol. 89, no. 8, pp. 1002–1011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Pranner, “Environmental Microbiology and Waste Utilization,” in G/AMV Proceedings, Emejuaiwe, Ed., pp. 67–69, Academic Press, London, UK, 1979. View at Google Scholar
  14. M. Camassola and A. J. P. Dillon, “Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation,” Journal of Applied Microbiology, vol. 103, no. 6, pp. 2196–2204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Koomnok, “Selection of cellulase producing thermophilic fungi,” in Proceedings of the 31st Congress on Science and Technology of Thailand of Technology, Suranaree University, October 2005.
  16. J. R. Cherry and A. L. Fidants, “Directed evolution of industrial enzymes: an update,” Current Opinion in Biotechnology, vol. 14, no. 4, pp. 438–443, 2003. View at Publisher · View at Google Scholar
  17. K. Apun, B. C. Jong, and M. A. Salleh, “Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste,” Journal of General and Applied Microbiology, vol. 46, no. 5, pp. 263–267, 2000. View at Google Scholar · View at Scopus
  18. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  19. R. E. Buchanan and N. E. Gibbons, Bergey's of Determinative Bacteriology, Williams & Wilkins Co., Philadelphia, PA, USA, 1974.
  20. P. Chantawannakul, A. Oncharoen, K. Klanbut, E. Chukeatirote, and S. Lumyong, “Characterization of cellulases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in northern Thiland,” ScienceAsia, vol. 28, pp. 241–245, 2002. View at Publisher · View at Google Scholar
  21. A. M. Abdel-Mawgoud, M. M. Aboulwafa, and N. A. H. Hassouna, “Optimization of surfactin production by bacillus subtilis isolate BS5,” Applied Biochemistry and Biotechnology, vol. 150, no. 3, pp. 305–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Win, Z. Lianhui, L. Dog, W. Yong, Z. Zhenshan, and M. Zhihuai, “Conditions study of cellulose and acid protease production during the process of solid state fermentation of flaxseed meal,” American Society of Agriculture and Biological Engin, vol. 34, no. 6, pp. 45–51, 2008. View at Google Scholar
  23. E. Jansová, Z. Schwarzová, and J. Chaloupka, “Sporulation and synthesis of extracellular proteinases in Bacillus subtilis are more temperature-sensitive than growth,” Folia Microbiologica, vol. 38, no. 1, pp. 22–24, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. M. K. Bakare, I. O. Adewale, A. Ajayi, and O. O. Shonukan, “Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens,” African Journal of Biotechnology, vol. 4, no. 9, pp. 898–904, 2005. View at Google Scholar · View at Scopus
  25. A. K. Ray, A. Bairagi, K. Sarkar Ghosh, and S. K. Sen, “Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut,” Acta Ichthyologica et Piscatoria, vol. 37, no. 1, pp. 47–53, 2007. View at Google Scholar · View at Scopus
  26. M. Ishihara, M. Matsunaga, N. Hayashi, and V. Tišler, “Utilization of D-xylose as carbon source for production of bacterial cellulose,” Enzyme and Microbial Technology, vol. 31, no. 7, pp. 986–991, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Toda, T. Asakura, M. Fukaya, E. Entani, and Y. Kawamura, “Production of cellulose from D-arabitol by Acetobacter xylinum KU-1,” Bioscience, Biotechnology, and Biochemistry, vol. 59, no. 8, pp. 1564–1565, 1995. View at Publisher · View at Google Scholar
  28. K. V. Ramana, A. Tomar, and L. Singh, “Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum,” World Journal of Microbiology and Biotechnology, vol. 16, no. 3, pp. 245–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mandels, “Microbial source of cellulose,” Biotechnology and Bioengineering, vol. 5, pp. 81–105, 1975. View at Google Scholar