Table of Contents
ISRN Physiology
Volume 2013, Article ID 986320, 13 pages
http://dx.doi.org/10.1155/2013/986320
Review Article

Signalling in Neutrophils: A Retro Look

Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Centre de Recherche du CHU de Québec, 2705 Boulevard Laurier, Room T 1-42, Québec, QC, Canada G1V 4G2

Received 18 August 2013; Accepted 17 September 2013

Academic Editors: D. Lominadze, F. Moccia, and M. J. Tuvim

Copyright © 2013 Paul H. Naccache. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mocsai, “Diverse novel functions of neutrophils in immunity, inflammation, and beyond,” The Journal of Experimental Medicine, vol. 210, pp. 1283–1299, 2013. View at Publisher · View at Google Scholar
  2. F. C. Schmalstieg Jr. and A. S. Goldman, “Birth of the science of immunology,” Journal of Medical Biography, vol. 18, no. 2, pp. 88–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Beyrau, J. V. Bodkin, and S. Nourshargh, “Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity,” Open Biology, vol. 2, Article ID 120134, 2012. View at Publisher · View at Google Scholar
  4. N. A. Fanger, C. Liu, P. M. Guyre et al., “Activation of human T cells by major histocompatability complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid,” Blood, vol. 89, no. 11, pp. 4128–4135, 1997. View at Google Scholar · View at Scopus
  5. E. J. Gosselin, K. Wardwell, W. F. C. Rigby, and P. M. Guyre, “Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-γ, and IL-3,” Journal of Immunology, vol. 151, no. 3, pp. 1482–1490, 1993. View at Google Scholar · View at Scopus
  6. K. Puellmann, W. E. Kaminski, M. Vogel et al., “A variable immunoreceptor in a subpopulation of human neutrophils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14441–14446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Scapini, J. A. Lapinet-Vera, S. Gasperini, F. Calzetti, F. Bazzoni, and M. A. Cassatella, “The neutrophil as a cellular source of chemokines,” Immunological Reviews, vol. 177, pp. 195–203, 2000. View at Google Scholar · View at Scopus
  8. A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, “Neutrophils in the activation and regulation of innate and adaptive immunity,” Nature Reviews Immunology, vol. 11, no. 8, pp. 519–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Cicchetti, P. G. Allen, and M. Glogauer, “Chemotactic signaling pathways in neutrophils: from receptor to actin assembly,” Critical Reviews in Oral Biology and Medicine, vol. 13, no. 3, pp. 220–228, 2002. View at Google Scholar · View at Scopus
  10. V. Niggli, “Signaling to migration in neutrophils: importance of localized pathways,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 12, pp. 1619–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, C.-L. Chen, and M. Iijima, “Signaling mechanisms for chemotaxis,” Development Growth and Differentiation, vol. 53, no. 4, pp. 495–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Dale, L. Boxer, and W. Conrad Liles, “The phagocytes: neutrophils and monocytes,” Blood, vol. 112, no. 4, pp. 935–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, and A. Zychlinsky, “Neutrophil function: from mechanisms to disease,” Annual Review of Immunology, vol. 30, pp. 459–489, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nature Reviews Immunology, vol. 6, no. 3, pp. 173–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. J. Galli, N. Borregaard, and T. A. Wynn, “Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils,” Nature Immunology, vol. 12, no. 11, pp. 1035–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Jaillon, M. R. Galdiero, D. Del Prete, M. A. Cassatella, C. Garlanda, and A. Mantovani, “Neutrophils in innate and adaptive immunity,” Seminars in Immunopathology, vol. 35, no. 4, pp. 377–394, 2013. View at Publisher · View at Google Scholar
  17. S. Caielli, J. Banchereau, and V. Pascual, “Neutrophils come of age in chronic inflammation,” Current Opinion in Immunology, vol. 24, pp. 671–677, 2012. View at Publisher · View at Google Scholar
  18. A. Cerutti, I. Puga, and G. Magri, “The B cell helper side of neutrophils,” Journal of Leukocyte Biology, vol. 94, no. 4, pp. 677–682, 2013. View at Publisher · View at Google Scholar
  19. C. I. Timar, A. M. Lorincz, and E. Ligeti, “Changing world of neutrophils,” Pflügers Archiv, 2013. View at Publisher · View at Google Scholar
  20. H. L. Wright, R. J. Moots, R. C. Bucknall, and S. W. Edwards, “Neutrophil function in inflammation and inflammatory diseases,” Rheumatology, vol. 49, no. 9, pp. 1618–1631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Schiffmann, B. A. Corcoran, and S. M. Wahl, “N formylmethionyl peptides as chemoattractants for leucocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 3, pp. 1059–1062, 1975. View at Google Scholar · View at Scopus
  22. E. Schiffmann, H. V. Showell, B. A. Corcoran, P. A. Ward, E. Smith, and E. L. Becker, “The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli,” Journal of Immunology, vol. 114, no. 6, pp. 1831–1837, 1975. View at Google Scholar · View at Scopus
  23. H. J. Showell, R. J. Freer, S. H. Zigmond et al., “The structure activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils,” Journal of Experimental Medicine, vol. 143, no. 5, pp. 1154–1169, 1976. View at Google Scholar
  24. Y. Shi, A. D. Mucsi, and G. Ng, “Monosodium urate crystals in inflammation and immunity,” Immunological Reviews, vol. 233, no. 1, pp. 203–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Sun, P. Iribarren, N. Zhang et al., “Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor,” Journal of Immunology, vol. 173, no. 1, pp. 428–436, 2004. View at Google Scholar · View at Scopus
  26. S. B. Su, W.-H. Gong, J.-L. Gao et al., “T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor,” Blood, vol. 93, no. 11, pp. 3885–3892, 1999. View at Google Scholar · View at Scopus
  27. S. B. Su, J.-L. Gao, W.-H. Gong et al., “T21/DP107, a synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors,” Journal of Immunology, vol. 162, no. 10, pp. 5924–5930, 1999. View at Google Scholar · View at Scopus
  28. A. de Paulis, G. Florio, N. Prevete et al., “HIV-1 envelope gp41 peptides promote migration of human FcεRI+ cells and inhibit IL-13 synthesis through interaction with formyl peptide receptors,” Journal of Immunology, vol. 169, no. 8, pp. 4559–4567, 2002. View at Google Scholar · View at Scopus
  29. S. B. Su, W. Gong, J.-L. Gao et al., “A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells,” Journal of Experimental Medicine, vol. 189, no. 2, pp. 395–402, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Björkman, J. Karlsson, A. Karlsson et al., “Serum amyloid A mediates human neutrophil production of reactive oxygen species through a receptor independent of formyl peptide receptor like-1,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 245–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Christenson, L. Björkman, C. Tängemo, and J. Bylund, “Serum amyloid A inhibits apoptosis of human neutrophils via a P2X7-sensitive pathway independent of formyl peptide receptor-like 1,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. B. de Yang, Q. Chen, A. P. Schmidt et al., “LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1069–1074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D. El Kebir, Y. Zhang, L. A. Potempa, Y. Wu, A. Fournier, and J. G. Filep, “C-reactive protein-derived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32,” Journal of Leukocyte Biology, vol. 90, no. 6, pp. 1167–1175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Aas, K. L. Sand, H. C. Asheim, H. B. Benestad, and J. G. Iversen, “C-reactive protein triggers calcium signalling in human neutrophilic granulocytes via FcgammaRIIa in an allele-specific way,” Scandinavian Journal of Immunology, vol. 77, pp. 442–451, 2013. View at Publisher · View at Google Scholar
  35. J. M. Tadie, H. B. Bae, S. Jiang et al., “HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 304, pp. L342–L349, 2013. View at Google Scholar
  36. M. J. Berridge, “Inositol trisphosphate and calcium signalling mechanisms,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 933–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Liu, Y. Bi, R. Wang et al., “Kinase AKT1 negatively controls neutrophil recruitment and function in mice,” Journal of Immunology, vol. 191, no. 5, pp. 2680–2690, 2013. View at Publisher · View at Google Scholar
  38. B. B. Damaj, S. R. McColl, K. Neote, C. A. Heber, and P. H. Naccache, “Diverging signal transduction pathways activated by interleukin 8 (IL- 8) and related chemokines in human neutrophils. IL-8 and Gro-α differentially stimulate calcium influx through IL-8 receptors A and B,” The Journal of Biological Chemistry, vol. 271, no. 34, pp. 20540–20544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Mellado, A. Serrano, C. Martínez, and J. M. Rodríguez-Frade, “G protein-coupled receptor dimerization and signaling,” Methods in Molecular Biology, vol. 332, pp. 141–157, 2006. View at Google Scholar · View at Scopus
  40. M. Benkirane, D.-Y. Jin, R. F. Chun, R. A. Koup, and K.-T. Jeang, “Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32,” The Journal of Biological Chemistry, vol. 272, no. 49, pp. 30603–30606, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. L. M. Muñoz, P. Lucas, G. Navarro et al., “Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers,” Journal of Immunology, vol. 183, no. 11, pp. 7337–7346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Hüttenrauch, B. Pollok-Kopp, and M. Oppermann, “G protein-coupled receptor kinases promote phosphorylation and β-arrestin-mediated internalization of CCR5 homo- and hetero-oligomers,” The Journal of Biological Chemistry, vol. 280, no. 45, pp. 37503–37515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Stockinger, “Interaction of GPI-anchored cell surface proteins and complement receptor type 3,” Experimental and Clinical Immunogenetics, vol. 14, no. 1, pp. 5–10, 1997. View at Google Scholar · View at Scopus
  44. Y. Xia, G. Borland, J. Huang et al., “Function of the lectin domain of Mac-1/complement receptor type 3 (CD11b/CD18) in regulating neutrophil adhesion,” Journal of Immunology, vol. 169, no. 11, pp. 6417–6426, 2002. View at Google Scholar · View at Scopus
  45. H. R. Petty, A. L. Kindzelskii, Y. Adachi, and R. F. Todd III, “Ectodomain interactions of leukocyte integrins and pro-inflammatory GPI-linked membrane proteins,” Journal of Pharmaceutical and Biomedical Analysis, vol. 15, no. 9-10, pp. 1405–1416, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. H. R. Petty and R. F. Todd III, “Receptor-receptor interactions of complement receptor type 3 in neutrophil membranes,” Journal of Leukocyte Biology, vol. 54, no. 5, pp. 492–494, 1993. View at Google Scholar · View at Scopus
  47. D. A. Finney and L. A. Sklar, “Ligand/receptor internalization: a kinetic, flow cytometric analysis of the internalization of N-formyl peptides by human neutrophils,” Cytometry, vol. 4, no. 1, pp. 54–60, 1983. View at Google Scholar · View at Scopus
  48. L. Marois, E. Rollet-Labelle, and P. H. Naccache, “FcRs on human neutrophils. Emerging patho-physiological concerns,” Advances in Medicine and Biology, vol. 15, no. 48, 2011. View at Google Scholar
  49. L. Marois, M. Vaillancourt, S. Marois et al., “The ubiquitin ligase c-Cbl down-regulates FcγRIIa activation in human neutrophils,” Journal of Immunology, vol. 182, no. 4, pp. 2374–2384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Feniger-Barish, M. Ran, A. Zaslaver, and A. Ben-Baruch, “Differential modes of regulation of CXC chemokine-induced internalization and recycling of human CXCR1 and CXCR2,” Cytokine, vol. 11, no. 12, pp. 996–1009, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Zaslaver, R. Feniger-Barish, and A. Ben-Baruch, “Actin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2,” Journal of Immunology, vol. 166, no. 2, pp. 1272–1284, 2001. View at Google Scholar · View at Scopus
  52. G. N. Prado, H. Suzuki, N. Wilkinson, B. Cousins, and J. Navarro, “Role of the C terminus of the interleukin 8 receptor in signal transduction and internalization,” The Journal of Biological Chemistry, vol. 271, no. 32, pp. 19186–19190, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Bock, U. Martin, S. Gärtner et al., “The C terminus of the human C5a receptor (CD88) is required for normal ligand-dependent receptor internalization,” European Journal of Immunology, vol. 27, no. 6, pp. 1522–1529, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Hoffman, J. J. Linderman, and G. M. Omann, “Receptor up-regulation, internalization, and interconverting receptor states. Critical components of a quantitative description of N-formyl peptide-receptor dynamics in the neutrophil,” The Journal of Biological Chemistry, vol. 271, no. 31, pp. 18394–18404, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Barlic, M. H. Khandaker, E. Mahon et al., “β-Arrestins regulate interleukin-8-induced CXCR1 internalization,” The Journal of Biological Chemistry, vol. 274, no. 23, pp. 16287–16294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. D. E. van Epps, S. Simpson, J. G. Bender, and D. E. Chenoweth, “Regulation of C5a and formyl peptide receptor expression on human polymorphonuclear leukocytes,” Journal of Immunology, vol. 144, no. 3, pp. 1062–1068, 1990. View at Google Scholar · View at Scopus
  57. E. L. Becker, J. C. Kermode, P. H. Naccache et al., “The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin,” Journal of Cell Biology, vol. 100, no. 5, pp. 1641–1646, 1985. View at Google Scholar
  58. M. Volpi, P. H. Naccache, and T. F. P. Molski, “Pertussis toxin inhibits fMet-Leu-Phe- but not phorbol ester-stimulated changes in rabbit neutrophils: role of G proteins in excitation response coupling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 9, pp. 2708–2712, 1985. View at Google Scholar · View at Scopus
  59. M. W. Verghese, C. D. Smith, and R. Snyderman, “Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca+2 mobilization and cellular responses by leukocytes,” Biochemical and Biophysical Research Communications, vol. 127, no. 2, pp. 450–457, 1985. View at Google Scholar · View at Scopus
  60. T. F. P. Molski, P. H. Naccache, M. L. Marsh, J. Kermode, E. L. Becker, and R. I. Sha'afi, “Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the “G proteins” in calcium mobilization,” Biochemical and Biophysical Research Communications, vol. 124, no. 2, pp. 644–650, 1984. View at Google Scholar · View at Scopus
  61. M. Verghese, R. J. Uhing, and R. Snyderman, “A pertussis/choleratoxin-sensitive N protein may mediate chemoattractant receptor signal transduction,” Biochemical and Biophysical Research Communications, vol. 138, no. 2, pp. 887–894, 1986. View at Google Scholar · View at Scopus
  62. B. B. Damaj, S. R. McColl, W. Mahana, M. F. Crouch, and P. H. Naccache, “Physical association of Gi2α with interleukin-8 receptors,” The Journal of Biological Chemistry, vol. 271, no. 22, pp. 12783–12789, 1996. View at Google Scholar · View at Scopus
  63. T. T. Amatruda III, S. Dragas-Graonic, R. Holmes, and H. D. Perez, “Signal transduction by the formyl peptide receptor: studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins,” The Journal of Biological Chemistry, vol. 270, no. 47, pp. 28010–28013, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Stephens, A. Smrcka, F. T. Cooke, T. R. Jackson, P. C. Sternweis, and P. T. Hawkins, “A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits,” Cell, vol. 77, no. 1, pp. 83–93, 1994. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Krugmann, P. T. Hawkins, N. Pryer, and S. Braselmann, “Characterizing the interactions between the two subunits of the p101/p110γ/phosphoinositide 3-kinase and their role in the activation of this enzyme by G(βγ) subunits,” The Journal of Biological Chemistry, vol. 274, no. 24, pp. 17152–17158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Majeed, E. Caveggion, C. A. Lowell, and G. Berton, “Role of Src kinases and Syk in Fcγ receptor-mediated phagocytosis and phagosome-lysosome fusion,” Journal of Leukocyte Biology, vol. 70, no. 5, pp. 801–811, 2001. View at Google Scholar · View at Scopus
  67. S. R. Yan, M. Huang, and G. Berton, “Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen,” Journal of Immunology, vol. 158, no. 4, pp. 1902–1910, 1997. View at Google Scholar · View at Scopus
  68. I. Ibarrola, P. J. M. Vossebeld, C. H. E. Homburg, M. Thelen, D. Roos, and A. J. Verhoeven, “Influence of tyrosine phosphorylation on protein interaction with FcγRIIa,” Biochimica et Biophysica Acta, vol. 1357, no. 3, pp. 348–358, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Kiefer, J. Brumell, N. Al-Alawi et al., “The Syk protein tyrosine kinase is essential for Fcγ/receptor signaling in macrophages and neutrophils,” Molecular and Cellular Biology, vol. 18, no. 7, pp. 4209–4220, 1998. View at Google Scholar · View at Scopus
  70. L. Fumagalli, H. Zhang, A. Baruzzi, C. A. Lowell, and G. Berton, “The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine,” Journal of Immunology, vol. 178, no. 6, pp. 3874–3885, 2007. View at Google Scholar · View at Scopus
  71. C. Giagulli, L. Ottoboni, E. Caveggion et al., “The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion,” Journal of Immunology, vol. 177, no. 1, pp. 604–611, 2006. View at Google Scholar · View at Scopus
  72. C. Astarie-Dequeker, S. Carreno, C. Cougoule, and I. Maridonneau-Parini, “The protein tyrosine kinase Hck is located on lysosomal vesicles that are physically and functionally distinct from CD63-positive lysosomes in human macrophages,” Journal of Cell Science, vol. 115, no. 1, pp. 81–89, 2002. View at Google Scholar · View at Scopus
  73. M. J. G. Fernandes, G. Lachance, G. Paré, E. Rollet-Labelle, and P. H. Naccache, “Signaling through CD16b in human neutrophils involves the Tec family of tyrosine kinases,” Journal of Leukocyte Biology, vol. 78, no. 2, pp. 524–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Popa-Nita, E. Rollet-Labelle, N. Thibault, C. Gilbert, S. G. Bourgoin, and P. H. Naccache, “Crystal-induced neutrophil activation. IX. Syk-dependent activation of class Ia phosphatidylinositol 3-kinase,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 763–773, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. O. Popa-Nita, L. Marois, G. Paré, and P. H. Naccache, “Crystal-induced neutrophil activation: X. Proinflammatory role of the tyrosine kinase Tec,” Arthritis and Rheumatism, vol. 58, no. 6, pp. 1866–1876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Gaudry, C. Gilbert, F. Barabe, P. E. Poubelle, and P. H. Naccache, “Activation of Lyn is a common element of the stimulation of human neutrophils by soluble and particulate agonists,” Blood, vol. 86, no. 9, pp. 3567–3574, 1995. View at Google Scholar · View at Scopus
  77. A. Zarbock and K. Ley, “Protein tyrosine kinases in neutrophil activation and recruitment,” Archives of Biochemistry and Biophysics, vol. 510, no. 2, pp. 112–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Zen and Y. Liu, “Role of different protein tyrosine kinases in fMLP-induced neutrophil transmigration,” Immunobiology, vol. 213, no. 1, pp. 13–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. G. Sitrin, S. L. Emery, T. M. Sassanella, R. A. Blackwood, and H. R. Petty, “Selective localization of recognition complexes for leukotriene B4 and formyl-met-leu-phe within lipid raft microdomains of human polymorphonuclear neutrophils,” Journal of Immunology, vol. 177, no. 11, pp. 8177–8184, 2006. View at Google Scholar · View at Scopus
  80. G. Lachance, S. Levasseur, and P. H. Naccache, “Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. Implication of phosphatidylinositol 3-kinases,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21537–21541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Gilbert, S. Levasseur, P. Desaulniers et al., “Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. II. Effects of LFM-A13, a specific Btk inhibitor,” Journal of Immunology, vol. 170, no. 10, pp. 5235–5243, 2003. View at Google Scholar · View at Scopus
  82. P. Desaulniers, M. Fernandes, C. Gilbert, S. G. Bourgoin, and P. H. Naccache, “Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals,” Journal of Leukocyte Biology, vol. 70, no. 4, pp. 659–668, 2001. View at Google Scholar · View at Scopus
  83. O. Popa-Nita, S. Proulx, G. Paré, E. Rollet-Labelle, and P. H. Naccache, “Crystal-induced neutrophil activation: XI. Implication and novel roles of classical protein kinase C,” Journal of Immunology, vol. 183, no. 3, pp. 2104–2114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Kasorn, P. Alcaide, Y. Jia et al., “Focal adhesion kinase regulates pathogen-killing capability and life span of neutrophils via mediating both adhesion-dependent and -independent cellular signals,” Journal of Immunology, vol. 183, no. 2, pp. 1032–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Tong, B. Zhao, H. Shi et al., “c-Abl tyrosine kinase plays a critical role in beta2 integrin-dependent neutrophil migration by regulating Vav1 activity,” Journal of Leukocyte Biology, vol. 93, pp. 611–622, 2013. View at Publisher · View at Google Scholar
  86. A. Baruzzi, I. Iacobucci, S. Soverini, C. A. Lowell, G. Martinelli, and G. Berton, “c-Abl and Src-family kinases cross-talk in regulation of myeloid cell migration,” FEBS Letters, vol. 584, no. 1, pp. 15–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. P. H. Naccache, H. J. Showell, E. L. Becker, and R. I. Sha'afi, “Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor,” Journal of Cell Biology, vol. 73, no. 2, pp. 428–444, 1977. View at Google Scholar · View at Scopus
  88. R. J. Petroski, P. H. Naccache, E. L. Becker, and R. I. Sha'afi, “Effect of chemotactic factors on calcium levels of rabbit neutrophils,” American Journal of Physiology: Cell Physiology, vol. 6, no. 1, pp. C43–C49, 1979. View at Google Scholar · View at Scopus
  89. J. R. White, P. H. Naccache, T. F. P. Molski, P. Borgeat, and R. I. Sha'afi, “Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor,” Biochemical and Biophysical Research Communications, vol. 113, no. 1, pp. 44–50, 1983. View at Google Scholar
  90. T. Pozzan, D. P. Lew, C. B. Wollheim, and R. Y. Tsien, “Is cytosolic ionized calcium regulating neutrophil activation?” Science, vol. 221, no. 4618, pp. 1413–1415, 1983. View at Google Scholar · View at Scopus
  91. F. V. Davies, A. K. Campbell, and M. B. Hallett, “Ca2+ oscillations in neutrophils triggered by immune complexes result from Ca2+ influx,” Immunology, vol. 82, no. 1, pp. 57–62, 1994. View at Google Scholar · View at Scopus
  92. P. Volpe, K.-H. Krause, S. Hashimoto et al., “‘Calciosome’, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 4, pp. 1091–1095, 1988. View at Google Scholar · View at Scopus
  93. M. Volpi, R. Yassin, P. H. Naccache, and R. I. Sha'afi, “Chemotactic factor causes rapid decreases in phosphatidyl-inositol,4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils,” Biochemical and Biophysical Research Communications, vol. 112, no. 3, pp. 957–964, 1983. View at Google Scholar · View at Scopus
  94. W. M. Mackin, “Effects of GTPγS and fMet-Leu-Phe on rat PMN phospholipase C (PLC) activity,” Agents and Actions, vol. 27, no. 3-4, pp. 407–409, 1989. View at Google Scholar · View at Scopus
  95. J. F. Klinker, K. Wenzel-Seifert, and R. Seifert, “G-Protein-coupled receptors in HL-60 human leukemia cells,” General Pharmacology, vol. 27, no. 1, pp. 33–54, 1996. View at Publisher · View at Google Scholar · View at Scopus
  96. P. H. Naccache, M. M. Molski, and M. Volpi, “Biochemical events associated with the stimulation of rabbit neutrophils by platelet-activating factor,” Journal of Leukocyte Biology, vol. 40, no. 5, pp. 533–548, 1986. View at Google Scholar · View at Scopus
  97. T. T. Amatruda III, S. Dragas-Graonic, R. Holmes, and H. D. Perez, “Signal transduction by the formyl peptide receptor: studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins,” The Journal of Biological Chemistry, vol. 270, no. 47, pp. 28010–28013, 1995. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Jiang, Y. Kuang, Y. Wu, W. Xie, M. I. Simon, and D. Wu, “Roles of phospholipase C β2 in chemoattractant-elicited responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 15, pp. 7971–7975, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. J. I. Wilde and S. P. Watson, “Regulation of phospholipase C γ isoforms in haematopoietic cells—Why one, not the other?” Cellular Signalling, vol. 13, no. 10, pp. 691–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Dusi, M. Donini, V. Della Bianca, and F. Rossi, “Tyrosine phosphorylation of phospholipase C-γ2 is involved in the activation of phosphoinositide hydrolysis by Fc receptors in human neutrophils,” Biochemical and Biophysical Research Communications, vol. 201, no. 3, pp. 1100–1108, 1994. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Hellberg, L. Molony, L. Zheng, and T. Andersson, “Ca2+ signalling mechanisms of the beta 2 integrin on neutrophils: involvement of phospholipase C gamma 2 and Ins(1,4,5)P3,” The Biochemical journal, vol. 317, p. 2, 1996. View at Google Scholar · View at Scopus
  102. K. Kwiatkowska and A. Sobota, “The clustered Fc gamma receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner,” European Journal of Immunology, vol. 31, pp. 989–998, 2001. View at Google Scholar
  103. K. Kwiatkowska, J. Frey, and A. Sobota, “Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts,” Journal of Cell Science, vol. 116, no. 3, pp. 537–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Gilbert, E. Rollet-Labelle, A. C. Caon, and P. H. Naccache, “Immunoblotting and sequential lysis protocols for the analysis of tyrosine phosphorylation-dependent signaling,” Journal of Immunological Methods, vol. 271, no. 1-2, pp. 185–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. J. T. Smyth, S.-Y. Hwang, T. Tomita, W. I. DeHaven, J. C. Mercer, and J. W. Putney, “Activation and regulation of store-operated calcium entry,” Journal of Cellular and Molecular Medicine, vol. 14, no. 10, pp. 2337–2349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. I. Bogeski, T. Kilch, and B. A. Niemeyer, “ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai,” The Journal of Physiology, vol. 590, pp. 4193–4200, 2012. View at Publisher · View at Google Scholar
  107. S. Srikanth and Y. Gwack, “Orai1, STIM1, and their associating partners,” The Journal of Physiology, vol. 590, pp. 4169–4177, 2012. View at Publisher · View at Google Scholar
  108. I. Derler, J. Madl, G. Schütz, and C. Romanin, “Structure, regulation and biophysics of ICRAC, STIM/Orai1,” Advances in Experimental Medicine and Biology, vol. 740, pp. 383–410, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Berna-Erro, P. C. Redondo, and J. A. Rosado, “Store-operated Ca2+ entry,” Advances in Experimental Medicine and Biology, vol. 740, pp. 349–382, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Marois, G. Paré, M. Vaillancourt, E. Rollet-Labelle, and P. H. Naccache, “FcγRIIIb triggers raft-dependent calcium influx in IgG-mediated responses in human neutrophils,” The Journal of Biological Chemistry, vol. 286, no. 5, pp. 3509–3519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. M. D. Salmon and J. Ahluwalia, “Pharmacology of receptor operated calcium entry in human neutrophils,” International Immunopharmacology, vol. 11, no. 2, pp. 145–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. M. D. Salmon and J. Ahluwalia, “Discrimination between receptor- and store-operated Ca2+ influx in human neutrophils,” Cellular Immunology, vol. 265, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Cai, S. Tang, X. Wang et al., “Requirement for both receptor-operated and store-operated calcium entry in N-formyl-methionine-leucine-phenylalanine-induced neutrophil polarization,” Biochemical and Biophysical Research Communications, vol. 430, pp. 816–821, 2013. View at Publisher · View at Google Scholar
  114. W. Zou, X. Meng, C. Cai et al., “Store-operated Ca2+ entry (SOCE) plays a role in the polarization of neutrophil-like HL-60 cells by regulating the activation of Akt, Src, and Rho family GTPases,” Cell Physiol Biochem, vol. 30, pp. 221–237, 2012. View at Publisher · View at Google Scholar
  115. T. J. Shuttleworth, J. L. Thompson, and O. Mignen, “STIM1 and the noncapacitative ARC channels,” Cell Calcium, vol. 42, no. 2, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. I. Heiner, J. Eisfeld, C. R. Halaszovich et al., “Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD,” Biochemical Journal, vol. 371, no. 3, pp. 1045–1053, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Heiner, J. Eisfeld, M. Warnstedt, N. Radukina, E. Jüngling, and A. Lückhoff, “Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes,” Biochemical Journal, vol. 398, no. 2, pp. 225–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Pantaler and A. Lückhoff, “Inhibitors of TRP channels reveal stimulus-dependent differential activation of Ca2+ influx pathways in human neutrophil granulocytes,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 380, no. 6, pp. 497–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Zeng, S. V. Webster, and P. M. Newton, “The biology of protein kinase C,” Advances in Experimental Medicine and Biology, vol. 740, pp. 639–661, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. A. C. Newton, “Protein kinase C: poised to signal,” American Journal of Physiology: Endocrinology and Metabolism, vol. 298, no. 3, pp. E395–E402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Castagna, Y. Takai, and K. Kaibuchi, “Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters,” The Journal of Biological Chemistry, vol. 257, no. 13, pp. 7847–7851, 1982. View at Google Scholar · View at Scopus
  122. L.-T. Tsao and J.-P. Wang, “Translocation of protein kinase C isoforms in rat neutrophils,” Biochemical and Biophysical Research Communications, vol. 234, no. 2, pp. 412–418, 1997. View at Publisher · View at Google Scholar · View at Scopus
  123. J. E. Repine, J. G. White, C. C. Clawson, and B. M. Holmes, “Effects of phorbol myristate acetate on the metabolism and ultrastructure of neutrophils in chronic granulomatous disease,” Journal of Clinical Investigation, vol. 54, no. 1, pp. 83–90, 1974. View at Google Scholar · View at Scopus
  124. J. E. Repine, J. G. White, C. C. Clawson, and B. M. Holmes, “The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes,” Journal of Laboratory and Clinical Medicine, vol. 83, no. 6, pp. 911–920, 1974. View at Google Scholar · View at Scopus
  125. J. G. White and R. D. Estensen, “Selective labilization of specific granules in polymorphonuclear leukocytes by phorbol myristate acetate,” American Journal of Pathology, vol. 75, no. 1, pp. 45–54, 1974. View at Google Scholar · View at Scopus
  126. L. R. de Chatelet, P. S. Shirley, and R. B. Johnston Jr., “Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes,” Blood, vol. 47, no. 4, pp. 545–554, 1976. View at Google Scholar · View at Scopus
  127. J. El-Benna, P. M.-C. Dang, M.-A. Gougerot-Pocidalo, J.-C. Marie, and F. Braut-Boucher, “p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases,” Experimental and Molecular Medicine, vol. 41, no. 4, pp. 217–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. R. I. Sha'afi, J. R. White, and T. F. P. Molski, “Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium,” Biochemical and Biophysical Research Communications, vol. 114, no. 2, pp. 638–645, 1983. View at Google Scholar · View at Scopus
  129. C. Gilbert, M. Gaudry, and P. H. Naccache, “Rapid priming of calcium mobilization and superoxide anion production in human neutrophils by substimulatory concentrations of phorbol esters: a novel role for protein kinase C and tyrosine phosphorylation in the up-modulation of signal transduction,” Cellular Signalling, vol. 4, no. 5, pp. 511–523, 1992. View at Publisher · View at Google Scholar · View at Scopus
  130. P. H. Naccache, T. F. P. Molski, P. Borgeat, and R. I. Sha'afi, “Phorbol esters inhibit the fMet-Leu-Phe- and leukotriene B4-stimulated calcium mobilization and enzyme secretion in rabbit neutrophils,” The Journal of Biological Chemistry, vol. 260, no. 4, pp. 2125–2131, 1985. View at Google Scholar · View at Scopus
  131. T. Matsumoto, T. F. P. Molski, M. Volpi et al., “Treatment of rabbit neutrophils with phorbol esters results in increased ADP-ribosylation catalyzed by pertussis toxin and inhibition of the GTPase stimulated by fMet-Leu-Phe,” FEBS Letters, vol. 198, no. 2, pp. 295–300, 1986. View at Google Scholar · View at Scopus
  132. A. Al-Shami, S. G. Bourgoin, and P. H. Naccache, “Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. I. Tyrosine phosphorylation-dependent stimulation of phosphatidylinositol 3-kinase and inhibition by phorbol esters,” Blood, vol. 89, no. 3, pp. 1035–1044, 1997. View at Google Scholar · View at Scopus
  133. C. Salerno and E. Capuozzo, “Effects of the semisynthetic bis-indole derivative KAR-2 on store-operated calcium entry in human neutrophils,” Arch Biochem Biophys, 2013. View at Google Scholar
  134. F. S. Lakschevitz, G. M. Aboodi, and M. Glogauer, “Oral neutrophil transcriptome changes result in a pro-survival phenotype in periodontal diseases,” PLoS One, vol. 8, Article ID e68983, 2013. View at Google Scholar
  135. W. S. Maaty, C. I. Lord, J. M. Gripentrog et al., “Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils,” The Journal of Biological Chemistry, vol. 288, pp. 27042–27058, 2013. View at Google Scholar
  136. S. Casulli and C. Elbim, “Interactions between human immunodeficiency virus type 1 and polymorphonuclear neutrophils,” Journal of Innate Immunity, Article ID 23867213, 2013. View at Publisher · View at Google Scholar
  137. O. Lindemann, D. Umlauf, S. Frank et al., “TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils,” Journal of Immunology, vol. 190, pp. 5496–5505, 2013. View at Publisher · View at Google Scholar
  138. R. Chari, S. Kim, S. Murugappan, A. Sanjay, J. L. Daniel, and S. P. Kunapuli, “Lyn, PKC-δ, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion,” Blood, vol. 114, no. 14, pp. 3056–3063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Andrews, L. R. Stephens, and P. T. Hawkins, “PI3K class IB pathway in neutrophils,” Science's STKE : signal transduction knowledge environment, vol. 2007, no. 407, p. cm3, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. P. T. Hawkins, K. E. Anderson, K. Davidson, and L. R. Stephens, “Signalling through Class I PI3Ks in mammalian cells,” Biochemical Society Transactions, vol. 34, no. 5, pp. 647–662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. L. R. Stephens, K. T. Hughes, and R. F. Irvine, “Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils,” Nature, vol. 351, no. 6321, pp. 33–39, 1991. View at Publisher · View at Google Scholar · View at Scopus
  142. A. E. Traynor-Kaplan, B. L. Thompson, A. L. Harris, P. G. M. Taylor Omann, and L. A. Sklar, “Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils,” The Journal of Biological Chemistry, vol. 264, no. 26, pp. 15668–15673, 1989. View at Google Scholar · View at Scopus
  143. M. Vaillancourt, S. Levasseur, M.-L. Tremblay, L. Marois, E. Rollet-Labelle, and P. H. Naccache, “The Src homology 2-containing inositol 5-phosphatase 1 (SHIP1) is involved in CD32a signaling in human neutrophils,” Cellular Signalling, vol. 18, no. 11, pp. 2022–2032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. P. H. Naccache, S. Levasseur, G. Lachance, S. Chakravarti, S. G. Bourgoini, and S. R. McColl, “Stimulation of human neutrophils by chemotactic factors is associated with the activation of phosphatidylinositol 3-kinase γ,” The Journal of Biological Chemistry, vol. 275, no. 31, pp. 23636–23641, 2000. View at Publisher · View at Google Scholar · View at Scopus
  145. L. R. Stephens, A. Eguinoa, H. Erdjument-Bromage et al., “The Gβγ/sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101,” Cell, vol. 89, no. 1, pp. 105–114, 1997. View at Google Scholar · View at Scopus
  146. S. Suire, A. M. Condliffe, G. J. Ferguson et al., “Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils,” Nature Cell Biology, vol. 8, no. 11, pp. 1303–1309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. Z. Jakus, S. Fodor, C. L. Abram, C. A. Lowell, and A. Mócsai, “Immunoreceptor-like signaling by β2 and β3 integrins,” Trends in Cell Biology, vol. 17, no. 10, pp. 493–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. Z. Li, H. Jiang, W. Xie, Z. Zhang, A. V. Smrcka, and D. Wu, “Roles of PLC-β2 and -β3 and PI3kγ in chemoattractant-mediated signal transduction,” Science, vol. 287, no. 5455, pp. 1046–1049, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. E. Hirsch, V. L. Katanaev, C. Garlanda et al., “Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation,” Science, vol. 287, no. 5455, pp. 1049–1052, 2000. View at Publisher · View at Google Scholar · View at Scopus
  150. T. Sasaki, J. Irie-Sasaki, R. G. Jones et al., “Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration,” Science, vol. 287, no. 5455, pp. 1040–4046, 2000. View at Publisher · View at Google Scholar · View at Scopus
  151. I. Boulven, S. Levasseur, S. Marois, G. Paré, E. Rollet-Labelle, and P. H. Naccache, “Class IA phosphatidylinositide 3-kinases, rather than p110γ, regulate formyl-methionyl-leucyl-phenylalanine-stimulated chemotaxis and superoxide production in differentiated neutrophil-like PLB-985 cells,” Journal of Immunology, vol. 176, no. 12, pp. 7621–7627, 2006. View at Google Scholar · View at Scopus
  152. J. G. R. Elferink and B. M. de Koster, “The effect of cyclic GMP and cyclic AMP on migration by electroporatedf human neutrophils,” European Journal of Pharmacology, vol. 246, no. 2, pp. 157–161, 1993. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Zalavary, O. Stendahl, and T. Bengtsson, “The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of FC receptor-mediated phagocytosis in human neutrophils,” Biochimica et Biophysica Acta, vol. 1222, no. 2, pp. 249–256, 1994. View at Publisher · View at Google Scholar · View at Scopus
  154. M. U. Ahmed, K. Hazeki, O. Hazeki, T. Katada, and M. Ui, “Cyclic AMP-increasing agents interfere with chemoattractant-induced respiratory burst in neutrophils as a result of the inhibition of phosphatidylinositol 3-kinase rather than receptor-operated Ca2+ influx,” The Journal of Biological Chemistry, vol. 270, no. 40, pp. 23816–23822, 1995. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Ottonello, M. P. Morone, P. Dapino, and F. Dallegri, “Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils,” Clinical and Experimental Immunology, vol. 101, no. 3, pp. 502–506, 1995. View at Google Scholar · View at Scopus
  156. R. Anderson, A. G. Mahomed, A. J. Theron, G. Ramafi, and C. Feldman, “Effect of rolipram and dibutyryl cyclic AMP on resequestration of cytosolic calcium in FMLP-activated human neutrophils,” British Journal of Pharmacology, vol. 124, no. 3, pp. 547–555, 1998. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Ottonello, R. Gonella, P. Dapino, C. Sacchetti, and F. Dallegri, “Prostaglandin E2 inhibits apoptosis in human neutrophilic polymorphonuclear leukocytes: role of intracellular cyclic AMP levels,” Experimental Hematology, vol. 26, no. 9, pp. 895–902, 1998. View at Google Scholar · View at Scopus
  158. J. G. R. Elferink and B. M. de Koster, “Inhibition of interleukin-8-activated human neutrophil chemotaxis by thapsigargin in a calcium-and cyclic AMP-dependent way,” Biochemical Pharmacology, vol. 59, no. 4, pp. 369–375, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. N. Thibault, C. Burelout, D. Harbour, P. Borgeat, P. H. Naccache, and S. G. Bourgoin, “Occupancy of adenosine A2a receptors promotes fMLP-induced cyclic AMP accumulation in human neutrophils: impact on phospholipase D activity and recruitment of small GTPases to membranes,” Journal of Leukocyte Biology, vol. 71, no. 2, pp. 367–377, 2002. View at Google Scholar · View at Scopus
  160. S. Jackowski and R. I. Shaafi, “Response of adenosine cyclic 3',5'-monophosphate level in rabbit neutrophils to the chemotactic formyl-methionyl-leucyl-phenylalanine,” Molecular Pharmacology, vol. 16, no. 2, pp. 473–481, 1979. View at Google Scholar · View at Scopus
  161. K. Boonnak, B. M. Slike, G. C. Donofrio, and M. A. Marovich, “Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection,” Journal of Immunology, vol. 190, pp. 5659–5665, 2013. View at Publisher · View at Google Scholar
  162. B. Markman, J. J. Tao, and M. Scaltriti, “PI3K pathway inhibitors: better not left alone,” Current Pharmaceutical Design, vol. 19, pp. 895–906, 2013. View at Publisher · View at Google Scholar
  163. M. A. Iannone, G. Wolberg, and T. P. Zimmerman, “Ca2+ ionophore-induced cyclic adenosine-3',5'-monophosphate elevation in human neutrophils. A calmodulin-dependent potentiation of adenylate cyclase response to endogenously produced adenosine: comparison to chemotactic agents,” Biochemical Pharmacology, vol. 42, pp. S105–S111, 1991. View at Publisher · View at Google Scholar · View at Scopus
  164. J. A. Brzostowski, S. Sawai, O. Rozov et al., “Phosphorylation of chemoattractant receptors regulates chemotaxis, actin re-organization, and signal-relay,” Journal of Cell Science, 2013. View at Publisher · View at Google Scholar
  165. M. R. Galdiero, E. Bonavita, I. Barajon, C. Garlanda, A. Mantovani, and S. Jaillon, “Tumor associated macrophages and neutrophils in cancer,” Immunobiology, vol. 218, no. 11, pp. 1402–1410, 2013. View at Google Scholar
  166. B. K. Pliyev, A. V. Shepelev, and A. V. Ivanova, “Role of the adhesion molecule CD99 in platelet-neutrophil interactions,” European Journal of Haematology, 2013. View at Publisher · View at Google Scholar
  167. Z. Hazan-Eitan, Y. Weinstein, N. Hadad, A. Konforty, and R. Levy, “Induction of FcγRIIA expression in myeloid PLB cells during differentiation depends on cytosolic phospholipase A2 activity and is regulated via activation of CREB by PGE2,” Blood, vol. 108, no. 5, pp. 1758–1766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. T. Z. Mayer, F. A. Simard, A. Cloutier, H. Vardhan, C. M. Dubois, and P. P. McDonald, “The p38-MSK1 signaling cascade influences cytokine production through CREB and C/EBP factors in human neutrophils,” Journal of Immunology, 2013. View at Publisher · View at Google Scholar
  169. R. Fritsch, I. de Krijger, K. Fritsch et al., “RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms,” Cell, vol. 153, pp. 1050–1063, 2013. View at Publisher · View at Google Scholar
  170. R. G. Coffey, J. S. Davis, and J. Y. Djeu, “Stimulation of guanylate cyclase activity and reduction of adenylate cyclase activity by granulocyte-macrophage colony-stimulating factor in human blood neutrophils,” Journal of Immunology, vol. 140, no. 8, pp. 2695–2701, 1988. View at Google Scholar · View at Scopus
  171. C. Engdahl, C. Lindholm, A. Stubelius, C. Ohlsson, H. Carlsten, and M. K. Lagerquist, “Periarticular bone loss in antigen-induced arthritis,” Arthritis Rheum, 2013. View at Google Scholar
  172. M. Kaur and D. Singh, “Neutrophil chemotaxis caused by COPD alveolar macrophages, the role of CXCL8 and the receptors CXCR1 / CXCR2,” Journal of Pharmacology and Experimental Therapeutics, 2013. View at Google Scholar
  173. A. Mantovani, “The Yin-Yang of Tumor-Associated Neutrophils,” Cancer Cell, vol. 16, no. 3, pp. 173–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. M. T. Silva, M. Correia-Neves, Neutrophils, and Macrophages:, “the main partners of phagocyte cell systems,” Frontiers in Immunology, vol. 3, article 174, 2012. View at Publisher · View at Google Scholar
  175. B. McDonald and P. Kubes, “Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation,” Journal of Molecular Medicine, vol. 89, no. 11, pp. 1079–1088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. O. Soehnlein and L. Lindbom, “Phagocyte partnership during the onset and resolution of inflammation,” Nature Reviews Immunology, vol. 10, no. 6, pp. 427–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Simons and G. Raposo, “Exosomes—vesicular carriers for intercellular communication,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 575–581, 2009. View at Publisher · View at Google Scholar · View at Scopus