Table of Contents
ISRN Neuroscience
Volume 2014 (2014), Article ID 103213, 10 pages
http://dx.doi.org/10.1155/2014/103213
Research Article

An Immunological Approach to Increase the Brain’s Resilience to Insults

1Functional Genomics and Translational Neuroscience Lab, Department of Molecular Medicine and Pathology, University of Auckland 85 Park Road, Grafton, Auckland 1142, New Zealand
2Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, BRT 912, 460 W 12th Avenue, Columbus, OH 43210, USA
3Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
4ViaLactia Biosciences (NZ) Ltd, UNISYS House, 650 Great South Road, Penrose, Auckland 1061, New Zealand

Received 1 February 2014; Accepted 12 March 2014; Published 24 April 2014

Academic Editors: S. Kawahara, S. Komai, and S. Lei

Copyright © 2014 En-Ju D. Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Luk, T. E. Kennedy, and A. F. Sadikot, “Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism,” Journal of Neuroscience, vol. 23, no. 6, pp. 2239–2250, 2003. View at Google Scholar · View at Scopus
  2. H. Komuro and P. Rakic, “Modulation of neuronal migration by NMDA receptors,” Science, vol. 259, no. 5104, pp. 95–97, 1993. View at Google Scholar · View at Scopus
  3. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. L. V. Kalia, S. K. Kalia, and M. W. Salter, “NMDA receptors in clinical neurology: excitatory times ahead,” The Lancet Neurology, vol. 7, no. 8, pp. 742–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. E. Hardingham, “Coupling of the NMDA receptor to neuroprotective and neurodestructive events,” Biochemical Society Transactions, vol. 37, no. 6, pp. 1147–1160, 2009. View at Google Scholar · View at Scopus
  6. D. W. Choi, “Excitotoxic cell death,” Journal of Neurobiology, vol. 23, no. 9, pp. 1261–1276, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Arundine and M. Tymianski, “Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury,” Cellular and Molecular Life Sciences, vol. 61, no. 6, pp. 657–668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Schwarcz and B. Meldrum, “Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders,” The Lancet, vol. 2, no. 8447, pp. 140–143, 1985. View at Google Scholar · View at Scopus
  9. C. Ikonomidou and L. Turski, “Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?” The Lancet Neurology, vol. 1, no. 6, pp. 383–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. W. Muir, “Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists,” Current Opinion in Pharmacology, vol. 6, no. 1, pp. 53–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. During, C. W. Symes, P. A. Lawlor et al., “An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy,” Science, vol. 287, no. 5457, pp. 1453–1460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ivanovic, H. Reiländer, B. Laube, and J. Kuhse, “Expression and initial characterization of a soluble glycine binding domain of the N-methyl-D-aspartate receptor NR1 subunit,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 19933–19937, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Yamakura and K. Shimoji, “Subunit- and site-specific pharmacology of the NMDA receptor channel,” Progress in Neurobiology, vol. 59, no. 3, pp. 279–298, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Masuko, K. Kashiwagi, T. Kuno et al., “A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D- aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein,” Molecular Pharmacology, vol. 55, no. 6, pp. 957–969, 1999. View at Google Scholar · View at Scopus
  15. M. Y. Mastakov, K. Baer, R. Xu, H. Fitzsimons, and M. J. During, “Combined injection of rAAV with mannitol enhances gene expression in the rat brain,” Molecular Therapy, vol. 3, no. 2, pp. 225–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Zucker, G. F. Wooten, and E. W. Lothman, “Blood-brain barrier changes with kainic acid-induced limbic seizures,” Experimental Neurology, vol. 79, no. 2, pp. 422–433, 1983. View at Google Scholar · View at Scopus
  17. T. Kirino, “Ischemic tolerance,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 11, pp. 1283–1296, 2002. View at Google Scholar · View at Scopus
  18. V. L. Dawson and T. M. Dawson, “Neuronal ischaemic preconditioning,” Trends in Pharmacological Sciences, vol. 21, no. 11, pp. 423–424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Dirnagl, R. P. Simon, and J. M. Hallenbeck, “Ischemic tolerance and endogenous neuroprotection,” Trends in Neurosciences, vol. 26, no. 5, pp. 248–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Wegener, B. Gottschalk, V. Jovanovic et al., “Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study,” Stroke, vol. 35, no. 3, pp. 616–621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Boeck, M. Ganzella, A. Lottermann, and D. Vendite, “NMDA preconditioning protects against seizures and hippocampal neurotoxicity induced by quinolinic acid in mice,” Epilepsia, vol. 45, no. 7, pp. 745–750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Pringle, F. Iannotti, G. J. C. Wilde, J. E. Chad, P. J. Seeley, and L. E. Sundstrom, “Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia,” Brain Research, vol. 755, no. 1, pp. 36–46, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Tremblay, B. Chakravarthy, K. Hewitt et al., “Transient NMDA receptor inactivation provides long-term protection cultured cortical neurons from a variety of death signals,” Journal of Neuroscience, vol. 20, no. 19, pp. 7183–7192, 2000. View at Google Scholar · View at Scopus
  24. M. Gonzalez-Zulueta, A. B. Feldman, L. J. Klesse et al., “Requirement for nitric oxide activation of p21ras/extracellular regulated kinase in neuronal ischemic preconditioning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 436–441, 2000. View at Google Scholar · View at Scopus
  25. M. C. Grabb and D. W. Choi, “Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors,” Journal of Neuroscience, vol. 19, no. 5, pp. 1657–1662, 1999. View at Google Scholar · View at Scopus
  26. S. V. Bhave, L. Ghoda, and P. L. Hoffman, “Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action,” Journal of Neuroscience, vol. 19, no. 9, pp. 3277–3286, 1999. View at Google Scholar · View at Scopus
  27. R. Tremblay, K. Hewitt, H. Lesiuk, G. Mealing, P. Morley, and J. P. Durkin, “Evidence that brain-derived neurotrophic factor neuroprotection is linked to its ability to reverse the NMDA-induced inactivation of protein kinase C in cortical neurons,” Journal of Neurochemistry, vol. 72, no. 1, pp. 102–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Ravati, B. Ahlemeyer, A. Becker, S. Klumpp, and J. Krieglstein, “Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-κB,” Journal of Neurochemistry, vol. 78, no. 4, pp. 909–919, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. McLaughlin, K. A. Hartnett, J. A. Erhardt et al., “Caspase 3 activation is essential for neuroprotection in preconditioning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 715–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sakurai, T. Hayashi, K. Abe, M. Aoki, M. Sadahiro, and K. Tabayashi, “Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits,” Journal of Vascular Surgery, vol. 27, no. 4, pp. 720–725, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. L.-J. Chen, X.-W. Su, P.-X. Qiu, Y.-J. Huang, and G.-M. Yan, “Thermal preconditioning protected cerebellar granule neurons of mice by modulating HSP70 expression,” Acta Pharmacologica Sinica, vol. 25, no. 4, pp. 458–461, 2004. View at Google Scholar · View at Scopus
  32. S.-H. Lee, H.-M. Kwon, Y.-J. Kim, K.-M. Lee, M. Kim, and B.-W. Yoon, “Effects of Hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia,” Stroke, vol. 35, no. 9, pp. 2195–2199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Racay, “Ischaemia-induced protein ubiquitinylation is differentially accompanied with heat-shock protein 70 expression after naïve and preconditioned ischaemia,” Cellular and Molecular Neurobiology, vol. 32, no. 1, pp. 107–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. X.-C. Sun, X.-H. Xian, W.-B. Li et al., “Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70,” Experimental Neurology, vol. 224, no. 2, pp. 347–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. R. G. Fariello, G. T. Golden, G. G. Smith, and P. F. Reyes, “Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist,” Epilepsy Research, vol. 3, no. 3, pp. 206–213, 1989. View at Google Scholar · View at Scopus
  36. R. Maj, R. G. Fariello, G. Ukmar et al., “PNU-151774E protects against kainate-induced status epilepticus and hippocampal lesions in the rat,” European Journal of Pharmacology, vol. 359, no. 1, pp. 27–32, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sheng, “The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain,” Journal of Cell Science, vol. 114, no. 7, p. 1251, 2001. View at Google Scholar · View at Scopus
  38. V. L. Dawson and T. M. Dawson, “Mechanisms of ischemic tolerance,” in Proceedings of the 22nd Princeton Conference on Cerebrovascular Disease, P. H. Chan, Ed., pp. 58–71, Cambridge University Press, 2002.
  39. J. Dalmau, A. J. Gleichman, E. G. Hughes et al., “Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies,” The Lancet Neurology, vol. 7, no. 12, pp. 1091–1098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Dalmau, E. Lancaster, E. Martinez-Hernandez, M. R. Rosenfeld, and R. Balice-Gordon, “Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis,” The Lancet Neurology, vol. 10, no. 1, pp. 63–74, 2011. View at Publisher · View at Google Scholar · View at Scopus