Table of Contents
ISRN Otolaryngology
Volume 2014 (2014), Article ID 103598, 5 pages
http://dx.doi.org/10.1155/2014/103598
Clinical Study

The Vestibular-Auditory Interaction for Auditory Brainstem Response to Low Frequencies

Department of Audiology, Faculty of Rehabilitation, Hamadan University of Medical Sciences and Health Services, Hamadan 16657-696, Iran

Received 5 February 2014; Accepted 27 February 2014; Published 31 March 2014

Academic Editors: A. Horii and J. Meinzen-Derr

Copyright © 2014 Seyede Faranak Emami and Nasrin Gohari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Carey and N. Amin, “Evolutionary changes in the cochlea and labyrinth: Solving the problem of sound transmission to the balance organs of the inner ear,” Anatomical Record A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 288, no. 4, pp. 482–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Burian and W. Gstoettner, “Projection of primary vestibular afferent fibers to the cochlear nucleus in the guinea pig,” Neuroscience Letters, vol. 84, no. 1, pp. 13–17, 1987. View at Google Scholar · View at Scopus
  3. C. A. McCormick, “Central connections of anamniote auditory otolith endorgans,” Journal of the Acoustical Society of America, vol. 119, no. 5, p. 3432, 2006. View at Google Scholar
  4. T. Murofushi and K. Kaga, “Sound sensitivity of the vestibular end-organs and sound-evoked vestibulocollic reflexes in mammals,” in Issues in Vestibular Evoked Myogenic Potential, T. Murofushi and K. Kaga, Eds., pp. 20–25, Springer, Tokyo, Japan, 2009. View at Google Scholar
  5. K. M. McNerney, A. H. Lockwood, M. L. Coad, D. S. Wack, and R. F. Burkard, “Use of 64-channel electroencephalography to study neural otolith-evoked responses,” Journal of the American Academy of Audiology, vol. 22, no. 3, pp. 143–155, 2011. View at Google Scholar · View at Scopus
  6. N. P. M. Todd, A. C. Paillard, K. Kluk, E. Whittle, and J. Colebatch, “Vestibular receptors contribute to cortical auditory evoked potentials,” Hearing Research, vol. 309, no. 3, pp. 63–74, 2014. View at Google Scholar
  7. K. Sheykholeslami and K. Kaga, “The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies,” Hearing Research, vol. 165, no. 1-2, pp. 62–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Emami, A. Pourbakht, K. Sheykholeslami, M. Kammali, F. Behnoud, and A. Daneshi, “Vestibular hearing and speech processing,” ISRN Otolaryngology, vol. 1, pp. 1–7, 2010, Persian. View at Google Scholar
  9. B. Chandrasekaran and N. Kraus, “The scalp-recorded brainstem response to speech: neural origins and plasticity,” Psychophysiology, vol. 47, no. 2, pp. 236–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Don and B. Kwong, “Auditory brainstem response: differential diagnosis,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., vol. 13, pp. 265–292, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2010. View at Google Scholar
  11. R. F. Burkard and C. Secor, “Overview of auditory evoked potentials,” in Hand Book of Clinical Audiology, J. Katz, L. Medwetsky, and R. Burkard, Eds., pp. 233–248, Lippincott Williams & Wilkins, New York, NY, USA, 5th edition, 2002. View at Google Scholar
  12. D. R. Stapells and P. Oates, “Estimation of the pore-tone audiogram by the auditory brainstem response: a review,” Audiology and Neuro-Otology, vol. 2, no. 5, pp. 257–280, 1997. View at Google Scholar · View at Scopus
  13. M. P. Gorga, T. A. Johnson, J. R. Kaminski, K. L. Beauchaine, C. A. Garner, and S. T. Neely, “Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds,” Ear and Hearing, vol. 27, no. 1, pp. 60–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Wang, “The harmonic organization of auditory cortex,” in The Neurophysiological Bases of Auditory Perception, E. A. Lopez-Poveda, R. Meddis, and A. R. Palmer, Eds., pp. 211–222, Springer Science, New York, NY, USA, 2010. View at Google Scholar
  15. Y. H. Cha, Acute Vestibulopathy. The Neurophysiologist, SAGE, 2011.
  16. R. W. Harrell, “Pure tone evaluation,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., pp. 71–88, Lippincott Williams & Wilkins, USA, 6th edition, 2002. View at Google Scholar
  17. C. G. Fowllff and E. G. Shanks, “Tmpanometry,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., pp. 175–204, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2002. View at Google Scholar
  18. S. A. Gelfand, “The acoustic reflex,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., pp. 205–232, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2002. View at Google Scholar
  19. J. W. Hall III, “Electrically evoked and myogenic responses,” in New Handbook of Auditory Evoked Responses, J. W. Hall III, S. D. Dragin, K. Heimsoth, and J. Sweeney, Eds., pp. 602–613, Pearson Education, Boston, Mass, USA, 2007. View at Google Scholar
  20. S. F. Emami and A. Daneshi, “Vestibular hearing and neural synchronization,” ISRN Otolaryngology, vol. 1, pp. 37–40, 2010, Persian. View at Google Scholar
  21. S. K. Scott and D. G. Sinex, “Speech,” in The Oxford Handbook of Auditory Science the Auditory Brain, A. Rees and A. R. Palmer, Eds., vol. 2, pp. 193–215, Oxford University Press, New York, NY, USA, 2010. View at Google Scholar
  22. S. F. Emami, “Acoustic sensitivity of the saccule and daf music,” Iranian Journal of Otorhinolaryngology, vol. 26, no. 75, pp. 105–110, 2014, Persian. View at Google Scholar
  23. S. F. Emami, “Is all human hearing cochlear?” The Scientific World Journal, vol. 2013, Article ID 147160, 5 pages, 2013. View at Publisher · View at Google Scholar
  24. S. F. Emami, “Hypersensitivity of vestibular system to sound and pseudoconductive hearing loss in deaf patients,” ISRN Otolaryngology, vol. 2014, Article ID 817123, 5 pages, 2014, Persian. View at Publisher · View at Google Scholar
  25. S. F. Emami, A. Pourbakht, A. Daneshi, K. Sheykholeslami, H. Emamjome, and M. Kammali, “Sound sensitivity of the saccule to low frequency in healthy adults,” ISRN Otolaryngology, vol. 2013, Article ID 429680, 6 pages, 2013, Persian. View at Publisher · View at Google Scholar
  26. M. Trivelli, M. Potena, V. Frari, T. Petitti, V. Deidda, and F. Salvinelli, “Compensatory role of saccule in deaf children and adults: novel hypotheses,” Medical Hypotheses, vol. 80, no. 1, pp. 43–46, 2013. View at Google Scholar