Table of Contents
ISRN Inorganic Chemistry
Volume 2014 (2014), Article ID 170919, 8 pages
http://dx.doi.org/10.1155/2014/170919
Research Article

Versatile SiO2 Nanoparticles@Polymer Composites with Pragmatic Properties

1Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Pune 411038, India
2Department of Applied Chemistry, Defense Institute of Advanced Technology (DIAT), Girinagar, Pune 411025, India
3Department of Chemistry, Bharati Vidyapeeth University, Yashwantrao Mohite College, Pune 411038, India

Received 17 November 2013; Accepted 10 December 2013; Published 29 January 2014

Academic Editors: A. Karadag and A. Mishra

Copyright © 2014 Vividha Dhapte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review,” Desalination, vol. 308, pp. 15–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Rai, A. Prabhune, and C. C. Perry, “Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings,” Journal of Materials Chemistry, vol. 20, no. 32, pp. 6789–6798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, “The synthesis of chitosan-based silver nanoparticles and their antibacterial activity,” Carbohydrate Research, vol. 344, no. 17, pp. 2375–2382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Dong, J. Huang, R. R. Koepsel, P. Ye, A. J. Russell, and K. Matyjaszewski, “Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes,” Biomacromolecules, vol. 12, no. 4, pp. 1305–1311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Vargas-Reus, K. Memarzadeh, J. Huang, G. G. Ren, and R. P. Allaker, “Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens,” International Journal of Antimicrobial Agents, vol. 40, no. 2, pp. 135–139, 2012. View at Publisher · View at Google Scholar
  6. T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 95–112, 2011. View at Google Scholar · View at Scopus
  7. G. Droval, I. Aranberri, A. Bilbao, L. German, M. Verelst, and J. Dexpert-Ghys, “Antimicrobial activity of nanocomposites: poly(amide) 6 and low density poly(ethylene) filled with zinc oxide,” e-Polymers, vol. 8, no. 1, pp. 1467–1479, 2008. View at Google Scholar · View at Scopus
  8. O. Girshevitz, Y. Nitzan, and C. N. Sukenik, “Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating,” Chemistry of Materials, vol. 20, no. 4, pp. 1390–1396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Vafayi and S. Gharibe, “Investigation of in vitro drug release from porous hollow silica nanospheres prepared of ZnS@SiO2 core-shell,” Bioinorganic Chemistry and Applications, vol. 2013, Article ID 541030, 6 pages, 2013. View at Publisher · View at Google Scholar
  10. M. J. Rosemary, I. MacLaren, and T. Pradeep, “Investigations of the antibacterial properties of ciprofloxacin@SiO2,” Langmuir, vol. 22, no. 24, pp. 10125–10129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Gokul, P. Matheswaran, and R. Sathyamoorthy, “Influence of annealing on physical properties of CdO thin films prepared by SILAR method,” Journal of Materials Science & Technology, vol. 29, no. 1, pp. 17–21, 2013. View at Google Scholar
  12. H.-J. Jeon, S.-C. Yi, and S.-G. Oh, “Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method,” Biomaterials, vol. 24, no. 27, pp. 4921–4928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. West, Solid State Chemistry and Its Applications, John Wiley & Sons, Singapore, 1990.
  14. X. Li, Y. Shen, H. Wang, and G. Fei, “Effects of silica sol on structure and properties of core-shell silicon-acrylic materials,” Advances in Chemical Engineering and Science, vol. 2, pp. 192–198, 2012. View at Google Scholar
  15. A. G. Novo, G. Pavlopoulos, and S. T. Feldman, “Corneal topographic changes after refitting polymethylmethacrylate contact lens wearers into rigid gas permeable materials,” The CLAO Journal, vol. 21, no. 1, pp. 47–51, 1995. View at Google Scholar · View at Scopus
  16. S. Ahmad, S. Ahmad, and S. A. Agnihotry, “Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites,” Bulletin of Materials Science, vol. 30, no. 1, pp. 31–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. F. dos Reis, F. S. Campos, A. P. Lage et al., “Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption,” Materials Research, vol. 9, no. 2, pp. 185–191, 2006. View at Google Scholar · View at Scopus
  18. S.-T. Hwang, Y.-B. Hahn, K.-S. Nahm, and Y.-S. Lee, “Preparation and characterization of poly(MSMA-co-MMA)-TiO2/SiO2 nanocomposites using the colloidal TiO2/SiO2 particles via blending method,” Colloids and Surfaces A, vol. 259, no. 1-3, pp. 63–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Hu, X. Liao, H. Diao, G. Kong, X. Zeng, and Y. Xu, “Amorphous silicon carbide films prepared by H2 diluted silane-methane plasma,” Journal of Crystal Growth, vol. 264, no. 1-3, pp. 7–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Li, H. Deng, and J. Zhao, “Performance research of polyester fabric treated by nano-titanium dioxide (nano-TiO2) anti-ultraviolet finishing,” International Journal of Chemistry, vol. 1, pp. 57–60, 2009. View at Google Scholar
  21. J. F. Lima, R. F. Martins, and O. A. Serra, “Transparent UV-absorbers thin films of zinc oxide: ceria system synthesized via sol-gel process,” Optical Materials, vol. 35, no. 1, pp. 56–60, 2012. View at Publisher · View at Google Scholar
  22. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 23, pp. 10354–10359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. K. Khanna, N. Singh, and S. Charan, “Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA,” Materials Letters, vol. 61, no. 25, pp. 4725–4730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-P. He, H.-M. Li, X.-Y. Wang, and Y. Gao, “In situ preparation of poly(ethylene terephthalate)-SiO2 nanocomposites,” European Polymer Journal, vol. 42, no. 5, pp. 1128–1134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. V. L. Hima Bindu, M. Vidyavathi, K. Kavitha, T. P. Sastry, and R. V. S. Kumar, “Preparation and evaluation of chitosan-gelatin composite films for wound healing activity,” Trends in Biomaterials and Artificial Organs, vol. 24, no. 3, pp. 122–130, 2010. View at Google Scholar · View at Scopus
  26. E.-R. Kenawy, F. I. Abdel-Hay, A. E.-R. R. El-Shanshoury, and M. H. El-Newehy, “Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts,” Journal of Polymer Science A, vol. 40, no. 14, pp. 2384–2393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. H. G. Martins, T. C. Carvalho, M. G. M. Souza et al., “Assessment of antimicrobial effect of Biosilicate against anaerobic, microaerophilic and facultative anaerobic microorganisms,” Journal of Materials Science, vol. 22, no. 6, pp. 1439–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Das and A. Mukherjee, “Biomaterial film for soluble organic sorption and anti-microbial activity in water environment,” Bioresource Technology, vol. 110, pp. 412–416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Qian, H. Xiao, G. Zhao, and B. He, “Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM,” ACS Applied Materials and Interfaces, vol. 3, no. 6, pp. 1895–1901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Kim, E. Kuk, K. N. Yu et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine, vol. 3, no. 1, pp. 95–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Munoz-Bonilla and M. Fernández-García, “Polymeric materials with antimicrobial activity,” Progress in Polymer Science, vol. 37, no. 2, pp. 281–339, 2012. View at Publisher · View at Google Scholar