Table of Contents
ISRN Pharmacology
Volume 2014, Article ID 182362, 7 pages
http://dx.doi.org/10.1155/2014/182362
Research Article

Antihyperlipidemic and Antioxidant Potential of Paeonia emodi Royle against High-Fat Diet Induced Oxidative Stress

1Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard University, New Delhi 110062, India
3Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India

Received 8 January 2014; Accepted 26 February 2014; Published 10 March 2014

Academic Editors: L. Estevinho and S. Mingmalairak

Copyright © 2014 Bilal A. Zargar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Evans and B. Halliwell, “Micronutrients: oxidant/antioxidant status,” British Journal of Nutrition, vol. 85, supplement 2, pp. S67–S74, 2001. View at Google Scholar · View at Scopus
  2. F. B. Araujo, D. S. Barbosa, C. Y. Hsin, R. C. Maranhao, and D. S. P. Abdalla, “Evaluation of oxidative stress in patients with hyperlipidemia,” Atherosclerosis, vol. 117, no. 1, pp. 61–71, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. N. R. Madamanchi, A. Vendrov, and M. S. Runge, “Oxidative stress and vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 1, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. W. Heinecke, “Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis,” The American Journal of Cardiology, vol. 91, no. 3, pp. 12A–16A, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Iyer, S. Panchal, H. Poudyal, and L. Brown, “Potential health benefits of Indian spices in the symptoms of the metabolic syndrome: a review,” Indian Journal of Biochemistry and Biophysics, vol. 46, no. 6, pp. 467–481, 2009. View at Google Scholar · View at Scopus
  6. S.-C. Cui, J. Yu, X.-H. Zhang, M.-Z. Cheng, L.-W. Yang, and J.-Y. Xu, “Antihyperglycemic and antioxidant activity of water extract from Anoectochilus roxburghii in experimental diabetes,” Experimental and Toxicologic Pathology, vol. 65, pp. 485–488, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sancheti, S. Sancheti, and S.-Y. Seo, “Antidiabetic and antiacetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats,” Experimental and Toxicologic Pathology, vol. 65, pp. 55–60, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. B. A. Zargar, M. H. Masoodi, B. Ahmed, and S. Akbar, “Paeonia emodi Royle: ethnomedicinal uses, phytochemistry and pharmacology,” Phytochemistry Letters, vol. 6, no. 2, pp. 261–266, 2013. View at Publisher · View at Google Scholar
  9. J. B. Harborne, Phytochemical Methods to Modern Techniques of Plant Analysis, Chapman and Hall, London, UK, 1976.
  10. H. Wagner, S. Bladt, and E. M. Zgainski, Plant Drug Analysis, Springer, New York, NY, USA, 1984.
  11. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Ganie, B. A. Zargar, A. Masood, and M. A. Zargar, “Hepatoprotective and antioxidant activity of rhizome of Podophyllum hexandrum against carbon tetra chloride induced hepatotoxicity in rats,” Biomedical and Environmental Sciences, vol. 26, no. 3, pp. 209–221, 2013. View at Google Scholar
  14. M. Oyaizu, “Studies on products of browning reaction prepared from glucosamine,” Japanese Journal of Nutrition, vol. 44, pp. 307–315, 1986. View at Publisher · View at Google Scholar
  15. B. Halliwell, J. M. C. Gutteridge, and O. I. Aruoma, “The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals,” Analytical Biochemistry, vol. 165, no. 1, pp. 215–219, 1987. View at Google Scholar · View at Scopus
  16. C. Beauchamp and I. Fridovich, “Superoxide dismutase: mproved assays and an assay applicable to acrylamide gels,” Analytical Biochemistry, vol. 44, no. 1, pp. 276–287, 1971. View at Google Scholar · View at Scopus
  17. R. J. Ruch, S.-J. Cheng, and J. E. Klaunig, “Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea,” Carcinogenesis, vol. 10, no. 6, pp. 1003–1008, 1989. View at Google Scholar · View at Scopus
  18. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, “Selenium: biochemical role as a component of glatathione peroxidase,” Science, vol. 179, no. 4073, pp. 588–590, 1973. View at Google Scholar · View at Scopus
  19. S. Marklund and G. Marklund, “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase,” European Journal of Biochemistry, vol. 47, no. 3, pp. 469–474, 1974. View at Google Scholar · View at Scopus
  20. B. Halliwell, S. Chirico, M. A. Crawford, K. S. Bjerve, and K. F. Gey, “Lipid peroxidation: its mechanism, measurement, and significance,” The American Journal of Clinical Nutrition, vol. 57, no. 5, pp. 715–725, 1993. View at Google Scholar · View at Scopus
  21. B. Halliwell and J. M. C. Gutteridge, “Oxygen toxicity, oxygen radicals, transition metals and disease,” Biochemical Journal, vol. 219, no. 1, pp. 1–14, 1984. View at Google Scholar · View at Scopus
  22. G.-C. Yen and P.-D. Duh, “Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species,” Journal of Agricultural and Food Chemistry, vol. 42, no. 3, pp. 629–632, 1994. View at Google Scholar · View at Scopus
  23. F. Liu, V. E. C. Ooi, and S. T. Chang, “Free radical scavenging activities of mushroom polysaccharide extracts,” Life Sciences, vol. 60, no. 10, pp. 763–771, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Parejo, F. Viladomat, J. Bastida et al., “Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants,” Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6882–6890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kappus, “Lipid peroxidation—mechanism and biological relevance,” in Free Radicals and Food Additives, Taylor and Francis, London, UK, 1991. View at Google Scholar
  26. B. Halliwell, R. Aeschbach, J. Löliger, and O. I. Aruoma, “The characterization of antioxidants,” Food and Chemical Toxicology, vol. 33, no. 7, pp. 601–617, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Vijayaraj, K. Muthukumar, J. Sabarirajan, and V. Nachiappan, “Antihyperlipidemic activity of Cassia auriculata flowers in triton WR 1339 induced hyperlipidemic rats,” Experimental and Toxicologic Pathology, vol. 65, pp. 135–141, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Matés, C. Pérez-Gómez, and I. N. De Castro, “Antioxidant enzymes and human diseases,” Clinical Biochemistry, vol. 32, no. 8, pp. 595–603, 1999. View at Publisher · View at Google Scholar · View at Scopus