Table of Contents
ISRN Sensor Networks
Volume 2014 (2014), Article ID 213195, 11 pages
http://dx.doi.org/10.1155/2014/213195
Research Article

Development and Implementation of Wireless Multigas Concentration Cloud System

1Department of Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei 106, Taiwan
2Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan 333, Taiwan

Received 8 December 2013; Accepted 1 January 2014; Published 4 March 2014

Academic Editors: L. Reggiani and A. Song

Copyright © 2014 Sheng-Chung Tien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Roelofs, L. S. Azaroff, C. Holcroft, H. Nguyen, and T. Doan, “Results from a community-based occupational health survey of Vietnamese-American nail salon workers,” Journal of Immigrant and Minority Health, vol. 10, no. 4, pp. 353–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Davidson, Marine Notice: Carbon Dioxide: Health Hazard, Australian Maritime Safety Authority, Canberra, Australia, 2003.
  3. C. Roelofs and T. Do, Exposure Assessment in Nail Salons: An Indoor Air Approach, International Scholarly Research Network Public Health, 2012.
  4. L. J. Goldin, L. Ansher, A. Berlin et al., “Indoor air quality survey of nail salons in Boston,” Journal of Immigrant and Minority Health, 2013. View at Google Scholar
  5. A. Tsigonia, A. Lagoudi, S. Chandrinou, A. Linos, N. Evlogias, and E. C. Alexopoulos, “Indoor air in beauty salons and occupational health exposure of cosmetologists to chemical substances,” International Journal of Environmental Research and Public Health, vol. 7, no. 1, pp. 314–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. D. Chaudhary, S. P. Nayse, and L. M. Waghmare, “Application of wireless sensor networks for greenhouse parameter control in precision agriculture,” International Journal of Wireless & Mobile Networks (IJWMN), vol. 3, no. 1, pp. 140–149, 2011. View at Google Scholar
  7. Y. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors, vol. 8, no. 6, pp. 3601–3623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Kułakowski, E. Calle, and J. L. Marzo, “Performance study of wireless sensor and actuator networks in forest fire scenarios,” International Journal of Communication Systems, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Panchard, Wireless sensor networks for marginal farming in India [Ph.D. thesis], Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2008.
  10. J. Kwon, G. Ahn, G. Kim, J. C. Kim, and H. Kim, “A study on NDIR-based CO2 sensor to apply remote air quality monitoring system,” in Proceedings of the ICROS-SICE International Joint Conference 2009 (ICCAS-SICE '09), vol. 33, pp. 1683–1687, August 2009. View at Scopus
  11. W. Zhengzhong, L. Zilin, L. Jun, and H. Xiaowei, “Wireless sensor networks for living environment monitoring,” in Proceedings of the WRI World Congress on Software Engineering (WCSE '09), vol. 3, pp. 22–25, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T.-Y. Lai, The Development of a Micro-Scale Air Quality Monitoring System Based on WSNs, National Taiwan University, Department of Bio-Industrial Mechatronic Engineering, Taipei, Taiwan, 2009.
  13. K. K. Khedo, R. Perseedoss, and A. Mungur, “A wireless sensor network air pollution monitoring system,” International Journal of Wireless & Mobile Networks (IJWMN), vol. 2, no. 2, pp. 31–45, 2010. View at Publisher · View at Google Scholar
  14. V. Jeličić, M. Magno, G. Paci, D. Brunelli, and L. Benini, “Design, characterization and management of a wireless sensor network for smart gas monitoring,” in Proceedings of the 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI '11), pp. 115–120, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-B. Tzeng and T. Wey, “Design and implement a cost effective and ubiquitous air quality monitoring system based on ZigBee wireless sensor network,” in Proceedings of the 2nd International Conference on Innovations in Bio-inspired Computing and Applications (IBICA '11), pp. 245–248, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. -C. Lu, The Development of an Air Quality Monitoring System for the Metropolitan Area Based on the Wireless Sensor Network Technology, National Taiwan University, Department of Bio-Industrial Mechatronic Engineering, Taipei, Taiwan, 2011.
  17. S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath, “Real-time air quality monitoring through mobile sensing in Metropolitan areas,” in Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (UrbComp '13), 2013.
  18. S.-K. Noh, K.-S. Kim, and Y.-K. Ji, “Design of a room monitoring system for wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2013, Article ID 189840, 7 pages, 2013. View at Publisher · View at Google Scholar
  19. J. Zhang, G. Song, H. Wang, and T. Meng, “Design of a wireless sensor network based monitoring system for home automation,” in Proceedings of the International Conference on Future Computer Sciences and Application (ICFCSA '11), pp. 57–60, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Kim, J. G. Lee, S. S. Ahn, and J. Lee, A Study on USNMulti-Modal Sensor Fusion Technique for Intelligent Air Conversions Digital Home Appliances, MITA, 2010.
  21. K. S. Kim, J. Z. Song, C. Zhang, T. S. Yun, and S. K. Noh, “A study on home indoor environment system,” in JCICT & the 1st Yellow International Journal of Distributed Sensor Networks 7 Sea, Proceedings of the International Conference on Ubiquitous Computing (YESICUC '11), 2011.
  22. M. M. Rahman, M. I. Abdullah, and M. S. Hossain, “Level based path selection technique in large WSN for hierarchical architecture,” International Journal of Advanced Science & Technology, vol. 32, pp. 33–43, 2011. View at Google Scholar
  23. H. Xianzhe, “Room temperature and humidity monitoring and energy-saving system,” in Proceedings of the 6th International Conference on Computer Science and Education (ICCSE '11), pp. 537–540, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Hwang and D. Yu, “Remote monitoring and controlling system based on ZigBee networks,” International Journal of Software Engineering and Its Applications, vol. 6, no. 3, pp. 35–42, 2012. View at Google Scholar
  25. J. Yap and Y. H. Noh, “A ZigBee-based home control system using OSGi management platform,” International Journal of Smart Home, vol. 6, no. 4, pp. 15–28, 2012. View at Google Scholar
  26. H. Zhang and Y. Liu, “Study and design of adaptive environment control system for mobile base stations,” in Proceedings of the International Conference on Control Engineering and Communication Technology (ICCECT '12), pp. 426–429, Liaoning, China, December 2012.
  27. WHO, “Global health risks,” 2012, http://www.who.int/healthinfo/global_burden_disease/global_health_risks/en/index.html.