Table of Contents
ISRN Mechanical Engineering
Volume 2014, Article ID 240942, 6 pages
http://dx.doi.org/10.1155/2014/240942
Research Article

Prediction of Waste Heat Energy Recovery Performance in a Naturally Aspirated Engine Using Artificial Neural Network

1Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca, Malaysia
2Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), P.O. Box 10, 50728 Kuala Lumpur, Malaysia

Received 3 January 2014; Accepted 3 March 2014; Published 30 March 2014

Academic Editors: T. Basak and K. Ismail

Copyright © 2014 Safarudin Gazali Herawan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Chammas and D. Clodic, “Combined cycle for hybrid vehicles,” SAE Paper 2005-01-1171, 2005. View at Google Scholar
  2. Z. Peng, T. Wang, Y. He, X. Yang, and L. Lu, “Analysis of environmental and economic benefits of integrated Exhaust Energy Recovery (EER) for vehicles,” Applied Energy, vol. 105, pp. 238–243, 2013. View at Google Scholar
  3. Y. Y. Hsiao, W. C. Chang, and S. L. Chen, “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, vol. 35, no. 3, pp. 1447–1454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Yu and K. T. Chau, “Thermoelectric automotive waste heat energy recovery using maximum power point tracking,” Energy Conversion and Management, vol. 50, no. 6, pp. 1506–1512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Lu, T. Wu, S. Bai et al., “Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator,” Energy, vol. 54, pp. 372–377, 2013. View at Publisher · View at Google Scholar
  6. D. H. Lee, J. S. Lee, and J. S. Park, “Effects of secondary combustion on efficiencies and emission reduction in the diesel engine exhaust heat recovery system,” Applied Energy, vol. 87, no. 5, pp. 1716–1721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, and R. V. Seeniraj, “Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system,” Applied Energy, vol. 88, no. 1, pp. 77–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Y. Lee, A. Navid, and L. Pilon, “Pyroelectric waste heat energy harvesting using heat conduction,” Applied Thermal Engineering, vol. 37, pp. 30–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. W. M. S. R. Weerasinghe, R. K. Stobart, and S. M. Hounsham, “Thermal efficiency improvement in high output diesel engines a comparison of a Rankine cycle with turbo-compounding,” Applied Thermal Engineering, vol. 30, no. 14-15, pp. 2253–2256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. A. Horst, H.-S. Rottengruber, M. Seifert, and J. Ringler, “Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems,” Applied Energy, vol. 105, pp. 293–303, 2013. View at Publisher · View at Google Scholar
  11. S. Quoilin, R. Aumann, A. Grill, A. Schuster, V. Lemort, and H. Spliethoff, “Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles,” Applied Energy, vol. 88, no. 6, pp. 2183–2190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Bombarda, C. M. Invernizzi, and C. Pietra, “Heat recovery from Diesel engines: a thermodynamic comparison between Kalina and ORC cycles,” Applied Thermal Engineering, vol. 30, no. 2-3, pp. 212–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Boretti, “Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine,” Applied Thermal Engineering, vol. 36, no. 1, pp. 73–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sprouse III and C. Depcik, “Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery,” Applied Thermal Engineering, vol. 51, pp. 711–722, 2013. View at Publisher · View at Google Scholar
  15. J. Czarnigowski, “A neural network model-based observer for idle speed control of ignition in SI engine,” Engineering Applications of Artificial Intelligence, vol. 23, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Wang, D. L. Yu, J. B. Gomm, G. F. Page, and S. S. Douglas, “Adaptive neural network model based predictive control for air-fuel ratio of SI engines,” Engineering Applications of Artificial Intelligence, vol. 19, no. 2, pp. 189–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-J. Zhai and D.-L. Yu, “Neural network model-based automotive engine air/fuel ratio control and robustness evaluation,” Engineering Applications of Artificial Intelligence, vol. 22, no. 2, pp. 171–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Shivakumar, P. Srinivasa Pai, and B. R. Shrinivasa Rao, “Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings,” Applied Energy, vol. 88, no. 7, pp. 2344–2354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. M. Kamar, R. Ahmad, N. B. Kamsah, and A. F. Mohamad Mustafa, “Artificial neural networks for automotive air-conditioning systems performance prediction,” Applied Thermal Engineering, vol. 50, no. 1, pp. 63–70, 2013. View at Publisher · View at Google Scholar
  20. H. Mohamed Ismail, H. K. Ng, C. W. Queck, and S. Gan, “Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends,” Applied Energy, vol. 92, pp. 769–777, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. T. F. Yusaf, D. R. Buttsworth, K. H. Saleh, and B. F. Yousif, “CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network,” Applied Energy, vol. 87, no. 5, pp. 1661–1669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Sayin, H. M. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci, “Performance and exhaust emissions of a gasoline engine using artificial neural network,” Applied Thermal Engineering, vol. 27, no. 1, pp. 46–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Najafi, B. Ghobadian, T. Tavakoli, D. R. Buttsworth, T. F. Yusaf, and M. Faizollahnejad, “Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network,” Applied Energy, vol. 86, no. 5, pp. 630–639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Çay, A. Çiçek, F. Kara, and S. Saǧiroǧlu, “Prediction of engine performance for an alternative fuel using artificial neural network,” Applied Thermal Engineering, vol. 37, pp. 217–225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Kara Togun and S. Baysec, “Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks,” Applied Energy, vol. 87, no. 1, pp. 349–355, 2010. View at Publisher · View at Google Scholar · View at Scopus