Table of Contents
ISRN Applied Mathematics
Volume 2014 (2014), Article ID 256504, 7 pages
http://dx.doi.org/10.1155/2014/256504
Research Article

Sliding Mode Control for the Synchronous Generator

Department of Electrical Engineering, Kao Yuan University, Kaohsiung 821, Taiwan

Received 23 November 2013; Accepted 19 February 2014; Published 20 March 2014

Academic Editors: J. Shen and K.-V. Yuen

Copyright © 2014 Yaote Chang and Chih-Chin Wen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Xie, L. Xie, Y. Wang, and G. Guo, “Decentralised control of multimachine power systems with guaranteed performance,” IEE Proceedings—Control Theory and Applications, vol. 147, no. 3, pp. 355–365, 2000. View at Google Scholar
  2. M. Galaz, R. Ortega, A. S. Bazanella, and A. M. Stankovic, “An energy-shaping approach to the design of excitation control of synchronous generators,” Automatica, vol. 39, no. 1, pp. 111–119, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. J. Huang, G. Y. Tu, D. S. Chen, and T. S. Chung, “Improved nonlinear excitation control of dual-excited synchronous generators,” in Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, pp. 735–740, Hong Kong, November 1997. View at Scopus
  4. J. Zhang and Y. Sun, “Backstepping design of nonlinear optimal control,” in Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Fu, “Extended backstepping approach for a class of non-linear systems in generalised output feedback canonical form,” IET Control Theory and Applications, vol. 3, no. 8, pp. 1023–1032, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. W.-L. Li, Y.-W. Jing, and X.-P. Liu, “Adaptive robust backstepping design for nonlinear steam valve controller,” Proceedings of the Chinese Society of Electrical Engineering, vol. 23, no. 1, pp. 155–158, 2003. View at Google Scholar · View at Scopus
  7. W. Li, S. Liu, G. Jiang, and G. M. Dimirovski, “Adaptive robust backstepping design for turbine valve controller,” in Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA '06), pp. 7439–7443, Dalian, China, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Xi, G. Feng, D. Cheng, and Q. Lu, “Nonlinear decentralized saturated controller design for power systems,” IEEE Transactions on Control Systems Technology, vol. 11, no. 4, pp. 539–547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ma, Z.-R. Xi, S.-W. Mei, and Q. Lu, “Nonlinear stabilizing controller design for the steam-valve and excitation system based on Hamiltonian energy theory,” Proceedings of the Chinese Society of Electrical Engineering, vol. 22, no. 5, pp. 88–93, 2002. View at Google Scholar · View at Scopus
  10. B. Wang and W. Lin, “Bounded control of dual-excited synchronous generator by using a passivity-based approach,” in Proceedings of the World Congress on Intelligent Control and Automation (WCICA '11), pp. 85–90, Taipei, Taiwan, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, H.-B. Ji, B. Wang, and H.-S. Xi, “Coordinated passivation techniques for the dual-excited and steam-valving control of synchronous generators,” IEE Proceedings—Control Theory and Applications, vol. 153, no. 1, pp. 69–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control. A survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2–22, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proceedings of the IEEE, vol. 76, no. 3, pp. 212–232, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Spurgeon and R. Davies, “A nonlinear control strategy for robust sliding mode performance in the presence of unmatched uncertainty,” International Journal of Control, vol. 57, no. 5, pp. 1107–1123, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. H.-J. Shieh and K.-K. Shyu, “Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 46, no. 2, pp. 380–389, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Chen and M. W. Dunnigan, “Sliding-mode torque and flux control of an induction machine,” IEE Proceedings: Electric Power Applications, vol. 150, no. 2, pp. 227–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-M. Kwan, “Robust adaptive control of induction motors,” International Journal of Control, vol. 67, no. 4, pp. 539–552, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. X.-G. Yan, C. Edwards, S. K. Spurgeon, and J. A. M. Bleijs, “Decentralised sliding-mode control for multimachine power systems using only output information,” IEE Proceedings—Control Theory and Applications, vol. 151, no. 5, pp. 627–635, 2004. View at Google Scholar
  19. Q. Lu, S. Mei, W. Hu, F. F. Wu, Y. Ni, and T. Shen, “Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems,” IEEE Transactions on Power Systems, vol. 16, no. 4, pp. 729–736, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. H. K. Khalil, Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ, USA, 2002.