Table of Contents
ISRN Electrochemistry
Volume 2014, Article ID 308382, 7 pages
Research Article

A CV Study of Copper Complexation with Guanine Using Glassy Carbon Electrode in Aqueous Medium

1Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh
2Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh

Received 22 February 2014; Accepted 18 March 2014; Published 2 April 2014

Academic Editors: H. Karimi-Maleh and B. Lakard

Copyright © 2014 Md. Sohel Rana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Farrell, Transition Metal Complexes as Drugs and Chemotherapeutic Agents, vol. 11, Springer, 1989.
  2. U. C. Gupta and S. C. Gupta, “Trace element toxicity relationships to crop production and livestock and human health: implications for management,” Communications in Soil Science and Plant Analysis, vol. 29, no. 11–14, pp. 1491–1522, 1998. View at Google Scholar · View at Scopus
  3. B. A. Chowdhury and R. K. Chandra, “Biological and health implications of toxic heavy metal and essential trace element interactions,” Progress in Food & Nutrition Science, vol. 11, no. 1, pp. 57–113, 1987. View at Google Scholar · View at Scopus
  4. V. Mudgal, N. Madaan, A. Mudgal, R. B. Singh, and S. Mishra, “Effect of toxic metals on human health,” The Open Nutraceuticals Journal, vol. 3, pp. 94–99, 2010. View at Google Scholar
  5. J. O. Nriagu, “A silent epidemic of environmental metal poisoning?” Environmental Pollution, vol. 50, no. 1-2, pp. 139–161, 1988. View at Google Scholar · View at Scopus
  6. J. N. Galloway, J. D. Thornton, S. A. Norton, H. L. Volchok, and R. A. N. McLean, “Trace-metals in atmospheric deposition: a review and assessment,” Atmospheric Environment, vol. 16, no. 7, pp. 1677–1700, 1982. View at Google Scholar · View at Scopus
  7. W. Zheng, M. Aschner, and J.-F. Ghersi-Egea, “Brain barrier systems: a new frontier in metal neurotoxicological research,” Toxicology and Applied Pharmacology, vol. 192, no. 1, pp. 1–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. V. Aposhian, R. M. Maiorino, D. Gonzalez-Ramirez et al., “Mobilization of heavy metals by newer, therapeutically useful chelating agents,” Toxicology, vol. 97, no. 1–3, pp. 23–38, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. S. Flora, M. Mittal, and A. Mehta, “Heavy metal induced oxidative stress & its possible reversal by chelation therapy,” Indian Journal of Medical Research, vol. 128, no. 4, pp. 501–523, 2008. View at Google Scholar · View at Scopus
  10. M. Elyasi, M. A. Khalilzadeh, and H. Karimi-Maleh, “High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples,” Food Chemistry, vol. 141, no. 4, pp. 4311–4317, 1996. View at Google Scholar
  11. H. Karimi-Maleh, P. Biparva, and M. Hatami, “A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid,” Biosensors and Bioelectronics, vol. 48, pp. 270–275, 2013. View at Google Scholar
  12. A. M. Oliveira-Brett, V. Diculescu, and J. A. P. Piedade, “Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode,” Bioelectrochemistry, vol. 55, no. 1-2, pp. 61–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Shaikh, K. Dilip Paul, M. S. Rahman, and K. Pradip Bakshi, “Interactions of guanine with Cr(VI), Ag(I), Cd(II) and Hg(II) in acidic aqueous medium,” Journal of Bangladesh Chemical Society, vol. 24, no. 2, pp. 106–114, 2011. View at Google Scholar
  14. P. Kamalakannan and D. Venkappayya, “Synthesis and characterization of cobalt and nickel chelates of 5-dimethylaminomethyl-2-thiouracil and their evaluation as antimicrobial and anticancer agents,” Journal of Inorganic Biochemistry, vol. 90, no. 1-2, pp. 22–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Robertazzi and J. A. Platts, “Binding of transition metal complexes to guanine and guanine-cytosine: Hydrogen bonding and covalent effects,” Journal of Biological Inorganic Chemistry, vol. 10, no. 8, pp. 854–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Zhu, A. Matilla, J. M. Tercero, V. Vijayaragavan, and J. A. Walmsley, “Binding of palladium(II) complexes to guanine, guanosine or guanosine 5′ -monophosphate in aqueous solution: potentiometric and NMR studies,” Inorganica Chimica Acta, vol. 357, no. 2, pp. 411–420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. F. Mastropietro, D. Armentano, E. Grisolia et al., “Guanine-containing copper(ii) complexes: synthesis, X-ray structures and magnetic properties,” Dalton Transactions, vol. 8, no. 4, pp. 514–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Sletten and B. Lie, “Copper complex of guanosine-5′-monophosphate,” Acta Crystallographica, vol. 32, pp. 3301–3304, 1976. View at Google Scholar
  19. A. Habib, T. Shireen, A. Islam, N. Begum, and A. M. Shafiqul Alam, “Cyclic voltammetric studies of copper and manganese in the presence of L-leucine using glassy carbon electrode,” Pakistan Journal of Analytical & Environmental Chemistry, vol. 7, pp. 96–102, 2006. View at Google Scholar
  20. A. A. Abdullah, “Synthesis and structural studies of some nucleic acids metal complexes,” Basrah Journal of Scienec, vol. 24, no. 1, pp. 115–128, 2006. View at Google Scholar
  21. R. B. Sumathi and M. B. Halli, “Metal (II) complexes derived from naphthofuran-2-carbohydrazide and diacetylmonoxime Schiff base: synthesis, spectroscopic, electrochemical, and biological investigation,” Bioinorganic Chemistry and Applications, vol. 2014, Article ID 942162, 11 pages, 2014. View at Publisher · View at Google Scholar
  22. T. Al Tanvir, M. Elius Hossain, M. Al Mamun, and M. Q. Ehsan, “Preparation and characterization of Iron(Iii) complex of Saccharin,” Journal of Bangladesh Academy of Sciences, vol. 37, no. 2, pp. 195–203, 2013. View at Google Scholar
  23. I. Cukrowski, J. R. Zeevaart, and N. V. Jarvis, “A potentiometric and differential pulse polarographic study of Cd(II) with 1-hydroxyethylenediphosphonic acid,” Analytica Chimica Acta, vol. 379, no. 1-2, pp. 217–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. Shaikh, M. Badrunnessa, J. Firdaws, M. Shahidur Rahman, N. Ahmed Pasha, and P. K. Bakshi, “A cyclic voltammetric study of the influence of supporting electrolytes on the redox behaviour of Cu(II) in aqueous medium,” Journal of Bangladesh Chemical Society, vol. 24, no. 2, pp. 158–164, 2011. View at Google Scholar