Table of Contents Author Guidelines Submit a Manuscript
ISRN Materials Science
Volume 2014 (2014), Article ID 361962, 11 pages
Research Article

Seismic Behaviour of Exterior Reinforced Concrete Beam-Column Joints in High Performance Concrete Using Metakaolin and Partial Replacement with Quarry Dust

1Department of Civil Engineering, Karpagam University, Coimbatore, Tamil Nadu 641 402, India
2Department of Civil Engineering, R.V.S. College of Engineering and Technology, Coimbatore, Tamil Nadu 641 021, India

Received 15 November 2013; Accepted 5 February 2014; Published 7 April 2014

Academic Editors: J. Foct and H. Yoshihara

Copyright © 2014 G. R. Vijay shankar and D. Suji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Recent earthquakes have demonstrated that most of the reinforced concrete structures were severely damaged; the beam-column joints, being the lateral and vertical load resisting members in reinforced concrete structures, are particularly vulnerable to failures during earthquakes. The existing reinforced concrete beam-column joints are not designed as per code IS13920:1993. Investigation of high performance concrete (HPC) joints with conventional concrete (CC) joints (exterior beam-column) was performed by comparing various reinforcement detailing schemes. Ten specimens were considered in this investigation and the results were compared: four specimens with CC (with and without seismic detailing), four specimens with HPC (with and without seismic detailing), and two specimens with HPC at confinement joint. The test was conducted for lateral load displacement, hysteresis loop, load ratio, percent of initial stiffness versus displacement curve, total energy dissipation, strain in beam main bars, and crack pattern. The results reveal that HPC with seismic detailing will be better compared with other reinforcements details under cyclic loading and reverse cyclic loading.