Table of Contents
ISRN Nutrition
Volume 2014, Article ID 384230, 13 pages
http://dx.doi.org/10.1155/2014/384230
Review Article

Bioactive Micronutrients in Coffee: Recent Analytical Approaches for Characterization and Quantification

Department of Chemistry, Ahmadu Bello University, PMB 1069, Zaria, Kaduna 2222, Nigeria

Received 22 September 2013; Accepted 7 November 2013; Published 22 January 2014

Academic Editors: D. Koya, T. Nurmi, and S. van Hemert

Copyright © 2014 Abdulmumin A. Nuhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Salinardi, K. H. Rubin, R. M. Black, and M.-P. St-Onge, “Coffee mannooligosaccharides, consumed as part of a free-living, weight-maintaining diet, increase the proportional reduction in body volume in overweight men,” The Journal of Nutrition, vol. 140, no. 11, pp. 1943–1948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Oliveira, F. A. Cabral, M. N. Eberlin, and H. M. A. B. Cordello, “Sensory evaluation of black instant coffee beverage with some volatile compounds present in aromatic oil from roasted coffee,” Ciencia e Tecnologia de Alimentos, vol. 29, no. 1, pp. 76–80, 2009. View at Google Scholar · View at Scopus
  3. J. Miran, “Space, mobility, and translocal connections across the Red Sea area since 1500,” Northeast African Studies, vol. 12, no. 1, pp. 9–26, 2012. View at Google Scholar
  4. K. Hundera, R. Aerts, M. de Beenhouwer et al., “Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests,” Biological Conservation, vol. 159, pp. 285–291, 2013. View at Google Scholar
  5. F. Serra, C. G. Guillou, F. Reniero et al., “Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios,” Rapid Communications in Mass Spectrometry, vol. 19, no. 15, pp. 2111–2115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Moguel and V. M. Toledo, “Biodiversity conservation in traditional coffee systems of Mexico,” Conservation Biology, vol. 13, no. 1, pp. 11–21, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Anthony, B. Bertrand, O. Quiros et al., “Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers,” Euphytica, vol. 118, no. 1, pp. 53–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-M. Klein, I. Steffan-Dewenter, and T. Tscharntke, “Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae),” The American Journal of Botany, vol. 90, no. 1, pp. 153–157, 2003. View at Google Scholar · View at Scopus
  9. A. Lécolier, P. Besse, A. Charrier, T.-N. Tchakaloff, and M. Noirot, “Unraveling the origin of Coffea arabica “Bourbon pointu” from la Réunion: a historical and scientific perspective,” Euphytica, vol. 168, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. Carvalho, M. R. P. L. Brigagão, M. H. S. Santos, F. B. A. de Paula, A. Giusti-Paiva, and L. Azevedo, “Organic and Conventional Coffea arabica L.: a comparative study of the chemical composition and physiological, biochemical and toxicological effects in Wistar rats,” Plant Foods for Human Nutrition, vol. 66, no. 2, pp. 114–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Topik, J. M. Talbot, and M. Samper, “Introduction globalization, neoliberalism, and the latin American coffee societies,” Latin American Perspectives, vol. 37, no. 2, pp. 5–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Tucker, H. Eakin, and E. J. Castellanos, “Perceptions of risk and adaptation: coffee producers, market shocks, and extreme weather in Central America and Mexico,” Global Environmental Change, vol. 20, no. 1, pp. 23–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. G. Burbano, M. G. Wright, N. E. Gillette et al., “Efficacy of traps, lures, and repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and other ambrosia beetles on Coffea arabica plantations and Acacia koa nurseries in Hawaii,” Environmental Entomology, vol. 41, no. 1, pp. 133–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. Kathurima, B. M. Gichimu, G. M. Kenji, S. M. Muhoho, and R. Boulanger, “Evaluation of beverage quality and green bean physical characteristics of selected Arabica coffee genotypes in Kenya,” African Journal of Food Science, vol. 3, no. 11, pp. 365–371, 2009. View at Google Scholar
  15. W. J. Rogers, S. Michaux, M. Bastin, and P. Bucheli, “Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees,” Plant Science, vol. 149, no. 2, pp. 115–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Teuber, “Geographical indications of origin as a tool of product differentiation: the case of coffee,” Journal of International Food and Agribusiness Marketing, vol. 22, no. 3-4, pp. 277–298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. C. Liu, C. F. You, C. Y. Chen, Y. C. Liu, and M. T. Chung, “Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium,” Food Chemistry, vol. 142, pp. 439–445, 2013. View at Publisher · View at Google Scholar
  18. T. Niseteo, D. Komes, A. Belščak-Cvitanović, D. Horžić, and M. Bude, “Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition,” Food Chemistry, vol. 134, no. 4, pp. 1870–1877, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Oliveira, S. Casal, S. Morais et al., “Intra- and interspecific mineral composition variability of commercial instant coffees and coffee substitutes: contribution to mineral intake,” Food Chemistry, vol. 130, no. 3, pp. 702–709, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Vignoli, D. G. Bassoli, and M. T. Benassi, “Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material,” Food Chemistry, vol. 124, no. 3, pp. 863–868, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. I. Mussatto, L. M. Carneiro, J. P. A. Silva, I. C. Roberto, and J. A. Teixeira, “A study on chemical constituents and sugars extraction from spent coffee grounds,” Carbohydrate Polymers, vol. 83, no. 2, pp. 368–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. F. Chu, P. H. Brown, B. J. Lyle et al., “Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees,” Journal of Agricultural and Food Chemistry, vol. 57, no. 20, pp. 9801–9808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Johnson, W. P. Koh, R. Wang, S. Govindarajan, M. C. Yu, and J. M. Yuan, “Coffee consumption and reduced risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study,” Cancer Causes and Control, vol. 22, no. 3, pp. 503–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Tai, S. Cheung, E. Chan, and D. Hasman, “Antiproliferation effect of commercially brewed coffees on human ovarian cancer cells in vitro,” Nutrition and Cancer, vol. 62, no. 8, pp. 1044–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. W. Arendash and C. Cao, “Caffeine and coffee as therapeutics against Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 1, pp. 117–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Boettler, K. Sommerfeld, N. Volz et al., “Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression,” Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 426–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Doré, N. Robertson, J. C. Errey et al., “Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine,” Structure, vol. 19, no. 9, pp. 1283–1293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Heckman, J. Weil, and E. G. de Mejia, “Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters,” Journal of Food Science, vol. 75, no. 3, pp. R77–R87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Amaresh, A. R. Mullaicharam, and M. A. El-Khider, “Chemistry and pharmacology of caffeine in different types of tea leaves,” International Journal of Nutrition, Pharmacology, Neurological Diseases, vol. 1, no. 2, pp. 110–115, 2011. View at Google Scholar
  30. L. Wang, L.-H. Gong, C.-J. Chen, H.-B. Han, and H.-H. Li, “Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea,” Food Chemistry, vol. 131, no. 4, pp. 1539–1545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. V. Vuong and P. D. Roach, “Caffeine in green tea: its removal and isolation,” Separation and Purification Reviews, vol. 43, no. 2, pp. 155–174, 2014. View at Google Scholar
  32. M. C. Borges, M. A. R. Vinolo, K. Nakajima et al., “The effect of mate tea (Ilex paraguariensis) on metabolic and inflammatory parameters in high-fat diet-fed Wistar rats,” International Journal of Food Sciences and Nutrition, vol. 64, no. 5, pp. 561–569, 2013. View at Google Scholar
  33. V. Olmos, N. Bardoni, A. S. Ridolfi, and E. C. Villaamil Lepori, “Caffeine levels in beverages from Argentina's market: application to caffeine dietary intake assessment,” Food Additives and Contaminants A, vol. 26, no. 3, pp. 275–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Oba, C. Nagata, K. Nakamura et al., “Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women,” British Journal of Nutrition, vol. 103, no. 3, pp. 453–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. N. Bhupathiraju, A. Pan, V. S. Malik et al., “Caffeinated and caffeine-free beverages and risk of type 2 diabetes,” The American Journal of Clinical Nutrition, vol. 97, pp. 155–166, 2013. View at Google Scholar
  36. C. J. Reissig, E. C. Strain, and R. R. Griffiths, “Caffeinated energy drinks—a growing problem,” Drug and Alcohol Dependence, vol. 99, no. 1–3, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. S. J. Keast, D. Sayompark, G. Sacks, B. A. Swinburn, and L. J. Riddell, “The influence of caffeine on energy content of sugar-sweetened beverages: ‘the caffeine-calorie effect’,” European Journal of Clinical Nutrition, vol. 65, no. 12, pp. 1338–1344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Mazzafera and M. B. Silvarolla, “Caffeine content variation in single green Arabica coffee seeds,” Seed Science Research, vol. 20, no. 3, pp. 163–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Tello, M. Viguera, and L. Calvo, “Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide,” Journal of Supercritical Fluids, vol. 59, pp. 53–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Laurence, K. Wallman, and K. Guelfi, “Effects of caffeine on time trial performance in sedentary men,” Journal of Sports Sciences, vol. 30, no. 12, pp. 1235–1240, 2012. View at Google Scholar
  41. R. D. S. Prediger, “Effects of caffeine in Parkinson's disease: from neuroprotection to the management of motor and non-motor symptoms,” Journal of Alzheimer's Disease, vol. 20, no. 1, pp. 205–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. F. Chu, W. H. Chang, R. M. Black et al., “Crude caffeine reduces memory impairment and amyloid β1—42 levels in an Alzheimer’s mouse model,” Food Chemistry, vol. 135, no. 3, pp. 2095–2102, 2012. View at Google Scholar
  43. Y. F. Chu, Y. Chen, P. H. Brown et al., “Bioactivities of crude caffeine: antioxidant activity, cyclooxygenase-2 inhibition, and enhanced glucose uptake,” Food Chemistry, vol. 131, no. 2, pp. 564–568, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Dworzański, G. Opielak, and F. Burdan, “Side effects of caffeine,” Polski Merkuriusz Lekarski, vol. 7, no. 161, pp. 357–361, 2009. View at Google Scholar · View at Scopus
  45. P. J. Rogers, S. V. Heatherley, E. L. Mullings, and J. E. Smith, “Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance,” Psychopharmacology, vol. 226, no. 2, pp. 229–240, 2013. View at Google Scholar
  46. Y. Narita and K. Inouye, “Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions,” Journal of Agricultural and Food Chemistry, vol. 61, no. 4, pp. 966–972, 2013. View at Google Scholar
  47. P. Górnas, G. Neunert, K. Baczyński, and K. Polewski, “Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: spectroscopic, thermodynamic and molecular modelling study,” Food Chemistry, vol. 114, no. 1, pp. 190–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Upadhyay and L. J. M. Rao, “An outlook on chlorogenic acids—occurrence, chemistry, technology, and biological activities,” Critical Reviews in Food Science and Nutrition, vol. 53, no. 9, pp. 968–984, 2013. View at Google Scholar
  49. M. Zhao, H. Wang, B. Yang, and H. Tao, “Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity,” Food Chemistry, vol. 120, no. 4, pp. 1138–1142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Memon, N. Memon, D. L. Luthria, M. I. Bhanger, and A. A. Pitafi, “Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan,” Polish Journal of Food and Nutrition Sciences, vol. 60, no. 1, pp. 25–32, 2010. View at Google Scholar · View at Scopus
  51. T. Joët, J. Salmona, A. Laffargue, F. Descroix, and S. Dussert, “Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation,” Plant, Cell and Environment, vol. 33, no. 7, pp. 1220–1233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J.-K. Moon, H. S. Yoo, and T. Shibamoto, “Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity,” Journal of Agricultural and Food Chemistry, vol. 57, no. 12, pp. 5365–5369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. T. L. Kreuml, D. Majchrzak, B. Ploederl, and J. Koenig, “Changes in sensory quality characteristics of coffee during storage,” Food Science and Nutrition, vol. 1, no. 4, pp. 267–272, 2013. View at Google Scholar
  54. K. W. Ong, A. Hsu, and B. K. H. Tan, “Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation,” Biochemical Pharmacology, vol. 85, no. 9, pp. 1341–1351, 2013. View at Google Scholar
  55. A.-S. Cho, S.-M. Jeon, M.-J. Kim et al., “Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice,” Food and Chemical Toxicology, vol. 48, no. 3, pp. 937–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Sato, S. Itagaki, T. Kurokawa et al., “In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 136–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Hoelzl, S. Knasmüller, K.-H. Wagner et al., “Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules,” Molecular Nutrition and Food Research, vol. 54, no. 12, pp. 1722–1733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S.-H. Kwon, H.-K. Lee, J.-A. Kim et al., “Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 210–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. G.-F. Wang, L.-P. Shi, Y.-D. Ren et al., “Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro,” Antiviral Research, vol. 83, no. 2, pp. 186–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Urushisaki, T. Takemura, S. Tazawa et al., “Caffeoylquinic acids are major constituents with potent anti-influenza effects in brazilian green propolis water extract,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 254914, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. C.-M. Ma, T. Kawahata, M. Hattori, T. Otake, L. Wang, and M. Daneshtalab, “Synthesis, anti-HIV and anti-oxidant activities of caffeoyl 5,6-anhydroquinic acid derivatives,” Bioorganic and Medicinal Chemistry, vol. 18, no. 2, pp. 863–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Lou, H. Wang, S. Zhu, C. Ma, and Z. Wang, “Antibacterial activity and mechanism of action of chlorogenic acid,” Journal of Food Science, vol. 76, no. 6, pp. M398–M403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Villarino, P. Sandín-España, P. Melgarejo, and A. de Cal, “High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis,” Journal of Agricultural and Food Chemistry, vol. 59, no. 7, pp. 3205–3213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Ashour, M. Wink, and J. Gershenzon, “Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes,” in Annual Plant Review, M. Wink, Ed., vol. 40 of Biochemistry of Plant Secondary Metabolism, pp. 258–303, Wiley-Blackwell, Oxford, UK, 2nd edition, 2010. View at Google Scholar
  65. I. Córdova-Guerrero, L. S. Andrés, A. E. Leal-Orozco, J. M. Padrón, J. M. Cornejo-Bravo, and F. León, “New strategy toward the diverted synthesis of oxidized abietane diterpenes via oxidation of 6, 7-dehydroferruginol methyl ether with dimethyldioxirane,” Tetrahedron Letters, vol. 54, no. 33, pp. 4479–4482, 2013. View at Google Scholar
  66. B. Yang, X.-F. Zhou, X.-P. Lin et al., “Cembrane diterpenes chemistry and biological properties,” Current Organic Chemistry, vol. 16, no. 12, pp. 1512–1539, 2012. View at Publisher · View at Google Scholar
  67. C. M. Gampe and E. M. Carreira, “Cyclohexyne cycloinsertion in the divergent synthesis of guanacastepenes,” Chemistry, vol. 18, no. 49, pp. 15761–15771, 2012. View at Google Scholar
  68. P. de Araújo Rodrigues, S. M. de Morais, C. M. de Souza et al., “Gastroprotective effect of barbatusin and 3-beta-hydroxy-3-deoxibarbatusin, quinonoid diterpenes isolated from Plectranthus grandis, in ethanol-induced gastric lesions in mice,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 725–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. R. K. Devappa, H. P. S. Makkar, and K. Becker, “Jatropha diterpenes: a review,” Journal of the American Oil Chemists' Society, vol. 88, no. 3, pp. 301–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. K. A. Lee, J. I. Chae, and J. H. Shim, “Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma,” Journal of Biomedical Science, vol. 19, no. 60, pp. 1–10, 2012. View at Google Scholar
  71. V. Sridevi, P. Giridhar, and G. A. Ravishankar, “Evaluation of roasting and brewing effect on antinutritional diterpenes-cafestol and kahweol in coffee,” Global Journal of Medical Research, vol. 11, no. 5, pp. 1–7, 2011. View at Google Scholar
  72. F. He and W. Harding, “New labdane diterpenes from Leonotis leonurus and their biological activities,” Planta Medica, vol. 78, no. 11, 2012. View at Google Scholar
  73. L. Faiella, F. D. Piaz, A. Bisio, A. Tosco, and N. de Tommasi, “A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes,” Molecular BioSystems, vol. 8, pp. 2637–2644, 2012. View at Google Scholar
  74. F. P. Miao, X. R. Liang, X. L. Yin, G. Wang, and N. Y. Ji, “Absolute configurations of unique harziane diterpenes from Trichoderma species,” Organic Letters, vol. 14, no. 15, pp. 3815–3817, 2012. View at Google Scholar
  75. M. J. Schnermann, C. M. Beaudry, N. E. Genung et al., “Divergent synthesis and chemical reactivity of bicyclic lactone fragments of complex rearranged spongian diterpenes,” Journal of the American Chemical Society, vol. 133, no. 43, pp. 17494–17503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. E. P. Stout, L. C. Yu, and T. E. Molinski, “Antifungal diterpene alkaloids from the Caribbean sponge Agelas citrina: unified configurational assignments of agelasidines and agelasines,” European Journal of Organic Chemistry, no. 27, pp. 5131–5135, 2012. View at Google Scholar
  77. F. D. Piaz, R. Cotugno, L. Lepore et al., “Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells,” Journal of Proteomics, vol. 82, no. 26, pp. 14–26, 2013. View at Google Scholar
  78. M. Fronza, E. Lamy, S. Günther, B. Heinzmann, S. Laufer, and I. Merfort, “Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action,” Phytochemistry, vol. 78, pp. 107–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Glisic, J. Ivanovic, M. Ristic, and D. Skala, “Extraction of sage (Salvia officinalis L.) by supercritical CO2: kinetic data, chemical composition and selectivity of diterpenes,” Journal of Supercritical Fluids, vol. 52, no. 1, pp. 62–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. D. N. Cavalcanti, M.-A. R. de Oliveira, J. C. de-Paula et al., “Variability of a diterpene with potential anti-HIV activity isolated from the Brazilian brown alga Dictyota menstrualis,” Journal of Applied Phycology, vol. 23, no. 5, pp. 873–876, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. S. J. Greay and K. A. Hammer, “Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity,” Phytochemistry Reviews, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. C. L. Céspedes, J. R. Salazar, and J. Alarcon, “Chemistry and biological activities of Calceolaria spp. (Calceolariaceae: scrophulariaceae),” Phytochemistry Reviews, vol. 12, no. 4, pp. 733–749, 2013. View at Google Scholar
  83. L. Rakotobe, K. Mezhoud, M. Berkal et al., “Acute toxic effects of 8-epidiosbulbin E, a 19-norclerodane diterpene from yam Dioscorea antaly, on medaka Oryzias latipes embryos,” Journal of Fish Biology, vol. 77, no. 4, pp. 870–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Zhou, L. Chan, and S. Zhou, “Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease,” Current Medicinal Chemistry, vol. 19, no. 21, pp. 3523–3531, 2012. View at Google Scholar
  85. K. F. Allred, K. M. Yackley, J. Vanamala, and C. D. Allred, “Trigonelline is a novel phytoestrogen in coffee beans,” Journal of Nutrition, vol. 139, no. 10, pp. 1833–1838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Sánchez-Hernández, P. Puchalska, C. García-Ruiz, A. L. Crego, and M. L. Marina, “Determination of trigonelline in seeds and vegetable oils by capillary electrophoresis as a novel marker for the detection of adulterations in olive oils,” Journal of Agricultural and Food Chemistry, vol. 58, no. 13, pp. 7489–7496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. G. G. Adams, S. Imran, S. Wang et al., “The hypoglycemic effect of pumpkin seeds, trigonelline (TRG), nicotinic acid (NA) and D-chiro-inositol (DCI) in controlling glycaemic levels in diabetes mellitus,” Critical Reviews in Food Science and Nutrition, 2013. View at Publisher · View at Google Scholar
  88. Y. Yin, H. Sasamoto, and H. Ashihara, “Pyridine metabolism and trigonelline synthesis in leaves of the mangrove legume trees Derris indica (Millettia pinnata) and Caesalpinia crista,” Natural Product Communications, vol. 6, no. 12, pp. 1835–1838, 2011. View at Google Scholar · View at Scopus
  89. M. Mathur and R. Kamal, “Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures,” Revista Brasileira de Farmacognosia, vol. 22, no. 5, pp. 994–1001, 2012. View at Google Scholar
  90. A. E. van Dijk, M. R. Olthof, J. C. Meeuse, E. Seebus, R. J. Heine, and R. M. van Dam, “Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance,” Diabetes Care, vol. 32, no. 6, pp. 1023–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Ashihara, W.-W. Deng, and C. Nagai, “Trigonelline biosynthesis and the pyridine nucleotide cycle in Coffea arabica fruits: metabolic fate of [carboxyl-14C]nicotinic acid riboside,” Phytochemistry Letters, vol. 4, no. 3, pp. 235–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. N. C. Bicho, A. E. Leitão, J. C. Ramalho, and F. C. Lidon, “Identification of chemical clusters discriminators of the roast degree in Arabica and Robusta coffee beans,” European Food Research and Technology, vol. 233, no. 2, pp. 303–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. O. Yoshinari and K. Igarashi, “Anti-diabetic effect of trigonelline and nicotinic acid, on KK-Ay mice,” Current Medicinal Chemistry, vol. 17, no. 20, pp. 2196–2202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Y. Zhou and S. W. Zhou, “Protection of trigonelline on experimental diabetic peripheral neuropathy,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 164219, 8 pages, 2012. View at Publisher · View at Google Scholar
  95. A. Arlt, S. Sebens, S. Krebs et al., “Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity,” Oncogene, vol. 32, pp. 4825–4835, 2013. View at Publisher · View at Google Scholar
  96. A. G. Antonio, R. S. Moraes, D. Perrone et al., “Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans,” Food Chemistry, vol. 118, no. 3, pp. 782–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Zhang, R. Linforth, and I. D. Fisk, “Cafestol extraction yield from different coffee brew mechanisms,” Food Research International, vol. 49, no. 1, pp. 27–31, 2012. View at Google Scholar
  98. J. Bravo, I. Juaniz, C. Monente et al., “Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds,” Journal of Agricultural and Food Chemistry, vol. 60, no. 51, pp. 12565–12573, 2012. View at Google Scholar
  99. W. Bi, J. Zhou, and K. H. Row, “Decaffeination of coffee bean waste by solid-liquid extraction,” Korean Journal of Chemical Engineering, vol. 28, no. 1, pp. 221–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. S. I. Mussatto, L. F. Ballesteros, S. Martins, and J. A. Teixeira, “Extraction of antioxidant phenolic compounds from spent coffee grounds,” Separation and Purification Technology, vol. 83, no. 1, pp. 173–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Danhelova, J. Hradecky, S. Prinosilova et al., “Rapid analysis of caffeine in various coffee samples employing direct analysis in real-time ionization-high-resolution mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 403, no. 10, pp. 2883–2889, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. I. A. Ludwig, L. Sanchez, B. Caemmerer, L. W. Kroh, M. P. de Peña, and C. Cid, “Extraction of coffee antioxidants: impact of brewing time and method,” Food Research International, vol. 48, no. 1, pp. 57–64, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. W. Mullen, B. Nemzer, B. Ou et al., “The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures,” Journal of Agricultural and Food Chemistry, vol. 59, no. 8, pp. 3754–3762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. F. Pena-Pereira, I. Lavilla, and C. Bendicho, “Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: a review,” Spectrochimica Acta B, vol. 64, no. 1, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Belay and A. V. Gholap, “Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy,” African Journal of Pure and Applied Chemistry, vol. 3, no. 11, pp. 234–240, 2009. View at Google Scholar
  106. S. Shipovskov, K. M. Kragh, B. S. Laursen, C. H. Poulsen, F. Besenbacher, and D. S. Sutherland, “Mannanase transfer into hexane and xylene by liquid-liquid extraction,” Applied Biochemistry and Biotechnology, vol. 160, no. 4, pp. 1124–1129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. A. A. Nuhu, C. Basheer, K. Alhooshani, and A. R. Al-Arfaj, “Determination of phenoxy herbicides in water samples using phase transfer microextraction with simultaneous derivatization followed by GC-MS analysis,” Journal of Separation Science, vol. 35, pp. 3381–3388, 2012. View at Google Scholar
  108. K. Cecilia, K. Glaston, M. Simon, B. Renaud, and N. Fredrick, “Volatile organic compounds in brewed Kenyan Arabica coffee genotypes by solid phase extraction gas chromatography mass spectrometry,” Food Science and Quality Management, vol. 8, pp. 18–26, 2012. View at Google Scholar
  109. H. Fan, Z. Deng, H. Zhong, and Q. Yao, “Development of new solid phase extraction techniques in the last ten years,” Journal of Chinese Pharmaceutical Sciences, vol. 22, no. 4, pp. 293–302, 2013. View at Google Scholar
  110. G. Caprioli, M. Cortese, L. Odello et al., “Importance of espresso coffee machine parameters on the extraction of chlorogenic acids in a certified Italian Espresso by using SPE-HPLC-DAD,” Journal of Food Research, vol. 2, no. 3, pp. 55–64, 2013. View at Google Scholar
  111. G. Spigno and D. M. de Faveri, “Microwave-assisted extraction of tea phenols: a phenomenological study,” Journal of Food Engineering, vol. 93, no. 2, pp. 210–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. R. C. E. Dias, A. F. Faria, A. Mercadante, N. Bragagnolo, and M. T. Benassi, “Comparison of extraction methods for kahweol and cafestol analysis in roasted coffee,” Journal of the Brazilian Chemical Society, vol. 24, no. 3, pp. 492–499, 2013. View at Google Scholar
  113. M. D. Pavlovic, A. V. Buntic, S. Siler-Marinkovic, and S. I. Dimitrijević-Branković, “Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee,” Separation and Purification Technology, vol. 118, pp. 503–510, 2013. View at Publisher · View at Google Scholar
  114. L. Hongcheng, S. Jinliang, L. Qiwan, L. Yangang, Y. H. Mei, and H. Lizhong, “Determination of trigonelline, nicotinic acid, and caffeine in Yunnan Arabica coffee by microwave-assisted extraction and HPLC with two columns in series,” Journal of AOAC International, vol. 95, no. 4, pp. 1138–1141, 2012. View at Google Scholar
  115. R. Upadhyay, K. Ramalakshmi, and L. J. M. Rao, “Microwave-assisted extraction of chlorogenic acids from green coffee beans,” Food Chemistry, vol. 130, no. 1, pp. 184–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Xi, D. Shen, S. Zhao, B. Lu, Y. Li, and R. Zhang, “Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction,” International Journal of Pharmaceutics, vol. 382, no. 1-2, pp. 139–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. C.-C. Wang, Y.-Y. Chou, S.-R. Sheu, M.-J. Jang, and T.-H. Chen, “Application of ultrasound thermal process on extracting flavor and caffeine of coffee,” Thermal Science, vol. 15, supplement 1, pp. S69–S74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Liu, Q. Li, J. Shao, H. Yan, and S. Lan, “Determination of trigonelline in coffee powder and instant coffee by ultrasonic extraction and high performance liquid chromatography,” Se Pu, vol. 29, no. 11, pp. 1103–1106, 2011. View at Google Scholar · View at Scopus
  119. L.-H. Wang, Y.-H. Mei, F. Wang, X.-S. Liu, and Y. Chen, “A novel and efficient method combining SFE and liquid-liquid extraction for separation of coumarins from Angelica dahurica,” Separation and Purification Technology, vol. 77, no. 3, pp. 397–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Machmudah, K. Kitada, M. Sasaki, M. Goto, J. Munemasa, and M. Yamagata, “Simultaneous extraction and separation process for coffee beans with supercritical CO2 and water,” Industrial and Engineering Chemistry Research, vol. 50, no. 4, pp. 2227–2235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. C. Petisca, T. Pérez-Palacios , A. Farah, O. Pinho, and I. M. P. V. O. Ferreira, “Furans and other volatile compounds in ground roasted and espresso coffee using headspace solid-phase microextraction: effect of roasting speed,” Food and Bioproducts Processing, vol. 91, no. 3, pp. 233–241, 2013. View at Google Scholar
  122. E. Liberto, M. R. Ruosi, C. Cordero, P. Rubiolo, C. Bicchi, and B. Sgorbini, “Non-separative headspace solid phase microextraction–mass spectrometry profile as a marker to monitor coffee roasting degree,” Journal of Agricultural and Food Chemistry, vol. 61, no. 8, pp. 1652–1660, 2013. View at Google Scholar
  123. J. S. Ribeiro, R. F. Teófilo, F. Augusto, and M. M. C. Ferreira, “Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 102, no. 1, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. J. López-Darias, J. L. Anderson, V. Pino, and A. M. Afonso, “Developing qualitative extraction profiles of coffee aromas utilizing polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction gas chromatography-mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 401, no. 9, pp. 2965–2976, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. A. N. Gloess, B. Schönbächler, B. Klopprogge et al., “Comparison of nine common coffee extraction methods: instrumental and sensory analysis,” European Food Research and Technology, vol. 236, no. 4, pp. 607–627, 2013. View at Google Scholar
  126. I. Ignat, I. Volf, and V. I. Popa, “A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables,” Food Chemistry, vol. 126, no. 4, pp. 1821–1835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Belay, “Some biochemical compounds in coffee beans and methods developed for their analysis,” International Journal of the Physical Sciences, vol. 6, no. 28, pp. 6373–6378, 2011. View at Google Scholar
  128. G. S. Duarte, A. A. Pereira, and A. Farah, “Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods,” Food Chemistry, vol. 118, no. 3, pp. 851–855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. I. Hečimović, A. Belščak-Cvitanović, D. Horžić, and D. Komes, “Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting,” Food Chemistry, vol. 129, no. 3, pp. 991–1000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Rudolph, A. Färbinger, and J. König, “Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT),” Food Additives and Contaminants A, vol. 29, no. 12, pp. 1849–1860, 2012. View at Google Scholar
  131. I. Moreira and I. S. Scarminio, “Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints,” Talanta, vol. 107, pp. 416–422, 2013. View at Google Scholar
  132. M. Mnatsakanyan, P. G. Stevenson, X. A. Conlan et al., “The analysis of café espresso using two-dimensional reversed phase-reversed phase high performance liquid chromatography with UV-absorbance and chemiluminescence detection,” Talanta, vol. 82, no. 4, pp. 1358–1363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Kuhnert, R. Jaiswal, P. Eravuchira, R. M. El-Abassy, B. Kammer, and A. Materny, “Scope and limitations of principal component analysis of high resolution LC-TOF-MS data: the analysis of the chlorogenic acid fraction in green coffee beans as a case study,” Analytical Methods, vol. 3, no. 1, pp. 144–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. R. Jaiswal and N. Kuhnert, “Hierarchical scheme for liquid chromatography/ multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beans,” Rapid Communications in Mass Spectrometry, vol. 24, no. 15, pp. 2283–2294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Jaiswal, M. F. Matei, F. Ullrich, and N. Kuhnert, “How to distinguish between cinnamoylshikimate esters and chlorogenic acid lactones by liquid chromatography-tandem mass spectrometry,” Journal of Mass Spectrometry, vol. 46, no. 9, pp. 933–942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. L. Zhang, D. M. Kujawinski, E. Federherr, T. C. Schmidt, and M. A. Jochmann, “Caffeine in your drink: natural or synthetic?” Analytical Chemistry, vol. 84, no. 6, pp. 2805–2810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. C. S. Bizzotto, A. D. Meinhart, C. A. Ballus, G. Ghiselli, and H. T. Godoy, “Comparison of capillary electrophoresis and high performance liquid chromatography methods for caffeine determination in decaffeinated coffee,” Food Science and Technology, vol. 33, no. 1, pp. 186–191, 2013. View at Google Scholar
  138. A. D. Meinhart, C. S. Bizzotto, C. A. Ballus et al., “Optimisation of a CE method for caffeine analysis in decaffeinated coffee,” Food Chemistry, vol. 120, no. 4, pp. 1155–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Li, J. Zhou, X. Gu, Y. Wang, X. J. Huang, and C. Yan, “Quantitative capillary electrophoresis and its application in analysis of alkaloids in tea, coffee, coca cola, and theophylline tablets,” Journal of Separation Science, vol. 32, no. 2, pp. 267–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Kaiser, D. Birkholz, S. Colomban, L. Navarini, and U. H. Engelhardt, “A new method for the preparative isolation of chlorogenic acid lactones from coffee and model roasts of 5-caffeoylquinic acid,” Journal of Agricultural and Food Chemistry, vol. 61, no. 28, pp. 6937–6941, 2013. View at Google Scholar
  141. Y. Yardim, “Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak,” Journal of Food Science, vol. 77, no. 4, pp. C408–C413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. G. A. M. Mersal, “Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples,” Food Analytical Methods, vol. 5, no. 3, pp. 520–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. G. Ziyatdinova, A. Nizamova, and H. Budnikov, “Novel coulometric approach to evaluation of total free polyphenols in tea and coffee beverages in presence of milk proteins,” Food Analytical Methods, vol. 4, no. 3, pp. 334–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. T. A. Araújo, J. C. Cardoso, A. M. Barbosa, and V. S. Ferreira, “Influence of the surfactant bromide of cetyltrimetyl ammonium in the determination of chlorogenic acid in instant coffee and mate tea samples,” Colloids and Surfaces B, vol. 73, no. 2, pp. 408–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Amare and S. Admassie, “Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee,” Talanta, vol. 93, pp. 122–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  146. W. J. R. Santos, M. Santhiago, I. V. P. Yoshida, and L. T. Kubota, “Novel electrochemical sensor for the selective recognition of chlorogenic acid,” Analytica Chimica Acta, vol. 695, no. 1-2, pp. 44–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. S. C. Fernandes, S. K. Moccelini, C. W. Scheeren et al., “Biosensor for chlorogenic acid based on an ionic liquid containing iridium nanoparticles and polyphenol oxidase,” Talanta, vol. 79, no. 2, pp. 222–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Jaiswal, M. F. Matei, A. Golon, M. Witt, and N. Kuhnert, “Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies,” Food and Function, vol. 3, pp. 976–984, 2012. View at Google Scholar
  149. W. Lei, Z. Pengyue, Z. Fengzu, B. Aijuan, and P. Canping, “Detection of caffeine in tea, instant coffee, green tea beverage, and soft drink by direct analysis in real time (DART) source coupled to single-quadrupole mass spectrometry,” Journal of AOAC International, vol. 96, no. 2, pp. 353–356, 2013. View at Google Scholar
  150. R. Hertz-Schünemann, T. Streibel, S. Ehlert, and R. Zimmermann, “Looking into individual coffee beans during the roasting process: direct micro-probe sampling online photo-ionisation mass spectrometric analysis of coffee roasting gases,” Analytical and Bioanalytical Chemistry, vol. 405, no. 22, pp. 7083–7096, 2013. View at Google Scholar
  151. J. S. Ribeiro, M. M. C. Ferreira, and T. J. G. Salva, “Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy,” Talanta, vol. 83, no. 5, pp. 1352–1358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. X. Zhang, W. Li, B. Yin et al., “Improvement of near infrared spectroscopic (NIRS) analysis of caffeine in roasted Arabica coffee by variable selection method of stability competitive adaptive reweighted sampling (SCARS),” Spectrochimica Acta A, vol. 114, pp. 350–356, 2013. View at Google Scholar
  153. R. Consonni, L. R. Cagliani, and C. Cogliati, “NMR based geographical characterization of roasted coffee,” Talanta, vol. 88, pp. 420–426, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. N. D'Amelio, L. Fontanive, F. Uggeri, F. Suggi-Liverani, and L. Navarini, “NMR reinvestigation of the caffeine-chlorogenate complex in aqueous solution and in coffee brews,” Food Biophysics, vol. 4, no. 4, pp. 321–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. F. Wei, K. Furihata, F. Hu, T. Miyakawa, and M. Tanokura, “Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy,” Magnetic Resonance in Chemistry, vol. 48, no. 11, pp. 857–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. G. del Campo, I. Berregi, R. Caracena, and J. Zuriarrain, “Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry,” Talanta, vol. 81, no. 1-2, pp. 367–371, 2010. View at Publisher · View at Google Scholar · View at Scopus