Table of Contents
ISRN Ophthalmology
Volume 2014 (2014), Article ID 403432, 6 pages
http://dx.doi.org/10.1155/2014/403432
Clinical Study

Aspheric Intraocular Lenses Implantation for Cataract Patients with Extreme Myopia

Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China

Received 26 January 2014; Accepted 6 March 2014; Published 19 March 2014

Academic Editors: I. G. Pallikaris and I.-J. Wang

Copyright © 2014 Yanwen Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Amano, Y. Amano, S. Yamagami et al., “Age-related changes in corneal and ocular higher-order wavefront aberrations,” The American Journal of Ophthalmology, vol. 137, no. 6, pp. 988–992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 19, no. 1, pp. 137–143, 2002. View at Google Scholar · View at Scopus
  3. L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” Journal of Cataract and Refractive Surgery, vol. 29, no. 8, pp. 1514–1521, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Fujikado, T. Kuroda, S. Ninomiya et al., “Age-related changes in ocular and corneal aberrations,” The American Journal of Ophthalmology, vol. 138, no. 1, pp. 143–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 17, no. 10, pp. 1697–1702, 2000. View at Google Scholar · View at Scopus
  6. S. Ohtani, K. Miyata, T. Samejima, M. Honbou, and T. Oshika, “Intraindividual comparison of aspherical and spherical intraocular lenses of same material and platform,” Ophthalmology, vol. 116, no. 5, pp. 896–901, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ohtani, S. Gekka, M. Honbou et al., “One-year prospective intrapatient comparison of aspherical and spherical intraocular lenses in patients with bilateral cataract,” The American Journal of Ophthalmology, vol. 147, no. 6, pp. 984.e1–989.e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye, vol. 22, no. 12, pp. 1493–1498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Ocular aberrations and contrast sensitivity after cataract surgery with AcrySof IQ intraocular lens implantation. Clinical comparative study,” Journal of Cataract and Refractive Surgery, vol. 33, no. 11, pp. 1918–1924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Pandita, S. M. Raj, V. A. Vasavada, V. A. Vasavada, N. S. Kazi, and A. R. Vasavada, “Contrast sensitivity and glare disability after implantation of AcrySof IQ Natural aspherical intraocular lens. Prospective randomized masked clinical trial,” Journal of Cataract and Refractive Surgery, vol. 33, no. 4, pp. 603–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Cui, R. Hu, Y. Zhang, and D. Lou, “Comparison of pseudophakic visual quality in spherical and aspherical intraocular lenses,” Canadian Journal of Ophthalmology, vol. 44, no. 3, pp. 274–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kurz, F. Krummenauer, H. Thieme, and H. B. Dick, “Contrast sensitivity after implantation of a spherical versus an aspherical intraocular lens in biaxial microincision cataract surgery,” Journal of Cataract and Refractive Surgery, vol. 33, no. 3, pp. 393–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Denoyer, M. Le Lez, S. Majzoub, and P. J. Pisella, “Quality of vision after cataract surgery after Tecnis Z9000 intraocular lens implantation. Effect of contrast sensitivity and wavefront aberration improvements on the quality of daily vision,” Journal of Cataract and Refractive Surgery, vol. 33, no. 2, pp. 210–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” Journal of Cataract and Refractive Surgery, vol. 33, no. 2, pp. 203–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Zeng, Y. Liu, X. Liu et al., “Aberration and contrast sensitivity comparison of aspherical and monofocal and multifocal intraocular lens eyes,” Clinical and Experimental Ophthalmology, vol. 35, no. 4, pp. 355–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Mangione, P. P. Lee, P. R. Gutierrez, K. Spritzer, S. Berry, and R. D. Hays, “Development of the 25-item national eye institute visual function questionnaire,” Archives of Ophthalmology, vol. 119, no. 7, pp. 1050–1058, 2001. View at Google Scholar · View at Scopus
  17. M. He, W. Huang, Y. Li, Y. Zheng, Q. Yin, and P. J. Foster, “Refractive error and biometry in older chinese adults: the liwan eye study,” Investigative Ophthalmology and Visual Science, vol. 50, no. 11, pp. 5130–5136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Zejmo, M. Formińska-Kapuścik, E. Pieczara et al., “Etiopathogenesis and management of high-degree myopia. Part I,” Medical Science Monitor, vol. 15, no. 9, pp. RA199–RA202, 2009. View at Google Scholar · View at Scopus
  19. S. Y. Wu, A. Hennis, B. Nemesure, and M. C. Leske, “Impact of glaucoma, lens opacities, and ataract surgery on visual functioning and related quality of life: the Barbados eye studies,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1333–1338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Leys, G. Zlateva, S. N. Shah, and M. Patel, “Quality of life in patients with age-related macular degeneration: results from the VISION study,” Eye, vol. 22, no. 6, pp. 792–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Okamoto, Y. Okamoto, T. Hiraoka, and T. Oshika, “Effect of vitrectomy for epiretinal membrane on visual function and vision-related quality of life,” The American Journal of Ophthalmology, vol. 147, no. 5, pp. 869.e1–874.e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. M. Bressler, T. S. Chang, J. T. Fine, C. M. Dolan, and J. Ward, “Anti-VEGF antibody for the treatment of predominantly classic choroidal neovascularization in age-related macular degeneration (ANCHOR) research group. Improved vision-related function after ranibizumab versus photodynamic therapy: a randomized clinical trial,” Archives of Ophthalmology, vol. 127, no. 1, pp. 13–21, 2009. View at Publisher · View at Google Scholar
  23. I. C. Lin, I. J. Wang, M. S. Lei, L. L. Lin, and F. R. Hu, “Improvements in vision-related quality of life with AcrySof IQ SN60WF aspherical intraocular lenses,” Journal of Cataract and Refractive Surgery, vol. 34, no. 8, pp. 1312–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. McKean-Cowdin, Y. Wang, J. Wu, S. P. Azen, and R. Varma, “Impact of visual field loss on health-related quality of life in glaucoma. The Los Angeles Latino eye study,” Ophthalmology, vol. 115, no. 6, pp. 941.e1–948.e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. R. Cole, R. W. Beck, P. S. Moke, R. L. Gal, and D. T. Long, “The national eye institute visual function questionnaire: experience of the ONTT,” Investigative Ophthalmology and Visual Science, vol. 41, no. 5, pp. 1017–1021, 2000. View at Google Scholar · View at Scopus
  26. M. Packer, I. H. Fine, and R. S. Hoffman, “Wavefront technology in cataract surgery,” Current Opinion in Ophthalmology, vol. 15, no. 1, pp. 56–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. B. D. Stoimenova, “The effect of myopia on contrast thresholds,” Investigative Ophthalmology and Visual Science, vol. 48, no. 5, pp. 2371–2374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Franchini, “Comparative assessment of contrast with spherical and aspherical intraocular lenses,” Journal of Cataract and Refractive Surgery, vol. 32, no. 8, pp. 1307.e1–1319.e1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos adapt advanced optics and Tecnis Z9000 intraocular lenses. Swedish multicenter study,” Journal of Cataract and Refractive Surgery, vol. 33, no. 9, pp. 1565–1572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Uchio, S. Ohno, and T. Kusakawa, “Spherical aberration and glare disability with intraocular lenses of different optical design,” Journal of Cataract and Refractive Surgery, vol. 21, no. 6, pp. 690–696, 1995. View at Google Scholar · View at Scopus
  31. M. F. Ellis, “Sharp-edged intraocular lens design as a cause of permanent glare,” Journal of Cataract and Refractive Surgery, vol. 27, no. 7, pp. 1061–1064, 2001. View at Publisher · View at Google Scholar · View at Scopus