Table of Contents
International Scholarly Research Notices
Volume 2014 (2014), Article ID 489453, 13 pages
http://dx.doi.org/10.1155/2014/489453
Research Article

Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites

School of Mechanical and Aerospace Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA

Received 11 April 2014; Revised 31 July 2014; Accepted 1 August 2014; Published 29 October 2014

Academic Editor: Miguel A. Esteso

Copyright © 2014 Salah U. Hamim and Raman P. Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Kornmann, L. A. Berglund, J. Sterte, and E. P. Giannelis, “Nanocomposites based on montmorillonite and unsaturated polyester,” Polymer Engineering and Science, vol. 38, no. 8, pp. 1351–1358, 1998. View at Google Scholar · View at Scopus
  2. E. P. Giannelis, “Polymer layered silicate nanocomposites,” Advanced Materials, vol. 8, no. 1, pp. 29–35, 1996. View at Google Scholar · View at Scopus
  3. Y. J. Phua, W. S. Chow, and Z. A. Mohd Ishak, “The hydrolytic effect of moisture and hygrothermal aging on poly(butylene succinate)/organo-montmorillonite nanocomposites,” Polymer Degradation and Stability, vol. 96, no. 7, pp. 1194–1203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Alamri and I. M. Low, “Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites,” Materials & Design, vol. 42, pp. 214–222, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Kaynak, G. I. Nakas, and N. A. Isitman, “Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites,” Applied Clay Science, vol. 46, no. 3, pp. 319–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. R. Lim and W. S. Chow, “Fracture toughness enhancement of epoxy by organo-montmorillonite,” Polymer: Plastics Technology and Engineering, vol. 50, no. 2, pp. 182–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. P. Singh, M. Zhang, and D. Chan, “Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction,” Journal of Materials Science, vol. 37, no. 4, pp. 781–788, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. B. Ng, L. S. Schadler, and R. W. Siegel, “Synthesis and mechanical properties of TiO2-epoxy nanocomposites,” Nanostructured Materials, vol. 12, no. 1, pp. 507–510, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M.-Y. Shen, T.-Y. Chang, T.-H. Hsieh et al., “Mechanical properties and tensile fatigue of grapheme nanoplatelets reinforced polymer nanocomposites,” Journal of Nanomaterials, vol. 2013, Article ID 565401, 9 pages, 2013. View at Publisher · View at Google Scholar
  10. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, “Graphene-based polymer nanocomposites,” Polymer, vol. 52, no. 1, pp. 5–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, vol. 62, no. 15, pp. 1993–1998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Prolongo, M. R. Gude, and A. Ureña, “Water uptake of epoxy composites reinforced with carbon nanofillers,” Composites A: Applied Science and Manufacturing, vol. 43, no. 12, pp. 2169–2175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Starkova, S. Chandrasekaran, L. A. S. A. Prado, F. Tolle, R. Mülhaupt, and K. Schulte, “Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites,” Polymer Degradation and Stability, vol. 98, no. 2, pp. 519–526, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Tang, S. Deng, L. Ye et al., “Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites,” Composites A: Applied Science and Manufacturing, vol. 42, no. 4, pp. 345–354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Soles and A. Yee, “A discussion of the molecular mechanisms of moisture transport in epoxy resins,” Journal of Polymer Science Part B-Polymer Physics, vol. 38, pp. 792–802, 2000. View at Google Scholar
  16. P. S. Theocaris, E. A. Kontou, and G. C. Papanicolaou, “The effect of moisture absorption on the thermomechanical properties of particulates,” Colloid & Polymer Science, vol. 261, no. 5, pp. 394–403, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. P. S. Theocaris, G. C. Papanicolaou, and E. A. Kontou, “Interrelation between moisture absorption, mechanical behavior, and extent of boundary interface in particulate composites,” Journal of Applied Polymer Science, vol. 28, no. 10, pp. 3145–3153, 1983. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ishisaka and M. Kawagoe, “Examination of the time-water content superposition on the dynamic viscoelasticity of moistened polyamide 6 and epoxy,” Journal of Applied Polymer Science, vol. 93, no. 2, pp. 560–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Aniskevich, T. Glaskova, and Y. Jansons, “Elastic and sorption characteristics of an epoxy binder in a composite during its moistening,” Mechanics of Composite Materials, vol. 41, no. 4, pp. 341–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Wolff, “Moisture effects on polymer matrix composites,” Sampe Journal, vol. 29, pp. 11–19, 1993. View at Google Scholar
  21. C. Carfagna, A. Apicella, and L. Nicolais, “Effect of the prepolymer composition of amino-hardened epoxy resins on the water sorption behavior and plasticization,” Journal of Applied Polymer Science, vol. 27, no. 1, pp. 105–112, 1982. View at Publisher · View at Google Scholar · View at Scopus
  22. B. de'Nève and M. E. R. Shanahan, “Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra,” Polymer, vol. 34, no. 24, pp. 5099–5105, 1993. View at Google Scholar · View at Scopus
  23. K. K. Aniskevich, T. I. Glaskova, A. N. Aniskevich, and Y. A. Faitelson, “Effect of moisture on the viscoelastic properties of an epoxy-clay nanocomposite,” Mechanics of Composite Materials, vol. 46, no. 6, pp. 573–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Al-Qadhi, N. Merah, Z. Gasem, N. Abu-Dheir, and B. Abdul Aleem, “Effect of water and crude oil on mechanical and thermal properties of epoxy-clay nanocomposites,” Polymer Composites, vol. 35, pp. 318–326, 2014. View at Google Scholar
  25. J. Zhou and J. P. Lucas, “Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy,” Polymer, vol. 40, no. 20, pp. 5505–5512, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Mijovic and K.-F. Lin, “The effect of hygrothermal fatigue on physical/mechanical properties and morphology of neat epoxy resin and graphite/epoxy composite,” Journal of Applied Polymer Science, vol. 30, no. 6, pp. 2527–2549, 1985. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Zhou and J. P. Lucas, “Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature,” Polymer, vol. 40, no. 20, pp. 5513–5522, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. W. W. Wright, “The effect of diffusion of water into epoxy resins and their carbon-fibre reinforced composites,” Composites, vol. 12, no. 3, pp. 201–205, 1981. View at Publisher · View at Google Scholar · View at Scopus
  29. M. P. Zanni-Deffarges and M. E. R. Shanahan, “Diffusion of water into an epoxy adhesive: comparison between bulk behaviour and adhesive joints,” International Journal of Adhesion and Adhesives, vol. 15, no. 3, pp. 137–142, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zanni-Deffarges and M. Shanahan, “Bulk and interphase effects in aged structural joints,” Journal of Adhesion, vol. 45, pp. 245–257, 1994. View at Google Scholar
  31. R. A. Jurf and J. R. Vinson, “Effect of moisture on the static and viscoelastic shear properties of epoxy adhesives,” Journal of Materials Science, vol. 20, no. 8, pp. 2979–2989, 1985. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Abdel Wahab, A. D. Crocombe, A. Beevers, and K. Ebtehaj, “Coupled stress-diffusion analysis for durability study in adhesively bonded joints,” International Journal of Adhesion and Adhesives, vol. 22, no. 1, pp. 61–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. J. Morgan, J. E. O'Neal, and D. B. Miller, “The structure, modes of deformation and failure, and mechanical properties of diaminodiphenyl sulphone-cured tetraglycidyl 4,4′ diaminodiphenyl methane epoxy,” Journal of Materials Science, vol. 14, no. 1, pp. 109–124, 1979. View at Publisher · View at Google Scholar · View at Scopus
  34. M. G. Lu, M. J. Shim, and S. W. Kim, “Effects of moisture on properties of epoxy molding compounds,” Journal of Applied Polymer Science, vol. 81, no. 9, pp. 2253–2259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. M. G. McMaster and D. S. Soane, “Water sorption in epoxy thin films,” IEEE Transactions on Composi tes, Hybrids aand Manufacturing Technology, vol. 12, no. 3, pp. 373–386, 1989. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Z. Xiao, M. Delamar, and M. E. R. Shanahan, “Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging,” Journal of Applied Polymer Science, vol. 65, no. 3, pp. 449–458, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Zhao and R. K. Y. Li, “Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites,” Composites A: Applied Science and Manufacturing, vol. 39, no. 4, pp. 602–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Glaskova and A. Aniskevich, “Moisture effect on deformability of epoxy/montmorillonite nanocomposite,” Journal of Applied Polymer Science, vol. 116, no. 1, pp. 493–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Wang, K. Wang, L. Chen, C. He, L. Wang, and Y. Zhang, “Hydrothermal effects on the thermomechanical properties of high performance epoxy/clay nanocomposites,” Polymer Engineering and Science, vol. 46, no. 2, pp. 215–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Alamri and I. M. Low, “Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites,” Composites A: Applied Science and Manufacturing, vol. 44, no. 1, pp. 23–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. S. E. Buck, D. W. Lischer, and S. Nemat-Nasser, “The durability of E-glass/vinyl ester composite materials subjected to environmental conditioning and sustained loading,” Journal of Composite Materials, vol. 32, no. 9, pp. 874–892, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. T. P. Ferguson and J. Qu, “Elastic modulus variation due to moisture absorption and permanent changes upon redrying in an epoxy based underfill,” IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 1, pp. 105–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, “Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites,” Composites Science and Technology, vol. 67, no. 7-8, pp. 1674–1683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Glaskova and A. Aniskevich, “Moisture absorption by epoxy/montmorillonite nanocomposite,” Composites Science and Technology, vol. 69, no. 15-16, pp. 2711–2715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Kusmono, M. W. Wildan, and Z. A. Mohd Ishak, “Preparation and properties of clay-reinforced epoxy nanocomposites,” International Journal of Polymer Science, vol. 2013, Article ID 690675, 7 pages, 2013. View at Publisher · View at Google Scholar
  46. S. C. Zunjarrao, R. Sriraman, and R. P. Singh, “Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites,” Journal of Materials Science, vol. 41, no. 8, pp. 2219–2228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. H. J. Kim and D. W. Seo, “Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites,” International Journal of Fatigue, vol. 28, no. 10, pp. 1307–1314, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  48. A. Athijayamani, M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel, “Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite,” Materials Science and Engineering A, vol. 517, no. 1-2, pp. 344–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Kornmann, H. Lindberg, and L. A. Berglund, “Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure,” Polymer, vol. 42, no. 10, pp. 4493–4499, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Vertuccio, A. Sorrentino, L. Guadagno et al., “Behavior of epoxy composite resins in environments at high moisture content,” Journal of Polymer Research, vol. 20, no. 6, article 178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Tham, Z. Mohd Ishak, and W. Chow, “Water absorption and hygrothermal aging behaviors of SEBS-g-MAH toughened poly(lactic acid)/halloysite nanocomposites,” Polymer-Plastics Technology and Engineering, vol. 53, no. 5, pp. 472–480, 2014. View at Publisher · View at Google Scholar
  52. V. Mortazavi, M. Atai, M. Fathi, S. Keshavarzi, N. Khalighinejad, and H. Badrian, “The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites,” Journal of Dental Research, vol. 9, no. 3, pp. 273–280, 2012. View at Google Scholar
  53. R. L. Bowen, “Effect of particle shape and size distribution in a reinforced polymer,” Journal of the American Dental Association, vol. 69, pp. 481–495, 1964. View at Google Scholar · View at Scopus
  54. N. Abacha, M. Kubouchi, K. Tsuda, and T. Sakai, “Performance of epoxy-nanocomposite under corrosive environment,” Express Polymer Letters, vol. 1, no. 6, pp. 364–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. F. U. Buehler and J. C. Seferis, “Effect of reinforcement and solvent content on moisture absorption in epoxy composite materials,” Composites A: Applied Science and Manufacturing, vol. 31, no. 7, pp. 741–748, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. J. H. Lee, K. Y. Rhee, and J. H. Lee, “Effects of moisture absorption and surface modification using 3-aminopropyltriethoxysilane on the tensile and fracture characteristics of MWCNT/epoxy nanocomposites,” Applied Surface Science, vol. 256, no. 24, pp. 7658–7667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Dorigato, A. Pegoretti, and M. Quaresimin, “Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates,” Materials Science and Engineering A, vol. 528, no. 19-20, pp. 6324–6333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. R. J. Morgan, J. E. O'neal, and D. L. Fanter, “The effect of moisture on the physical and mechanical integrity of epoxies,” Journal of Materials Science, vol. 15, no. 3, pp. 751–764, 1980. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Alamri and I. M. Low, “Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites,” Polymer Composites, vol. 33, no. 4, pp. 589–600, 2012. View at Publisher · View at Google Scholar · View at Scopus