Table of Contents
ISRN Veterinary Science
Volume 2014 (2014), Article ID 498218, 10 pages
http://dx.doi.org/10.1155/2014/498218
Research Article

Influence of Albizia lebbeck Saponin and Its Fractions on In Vitro Gas Production Kinetics, Rumen Methanogenesis, and Rumen Fermentation Characteristics

1Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
2Lovely Professional University, Jalandhar, Punjab 144411, India

Received 26 October 2013; Accepted 24 December 2013; Published 4 March 2014

Academic Editors: A. Paz Silva and W. Yang

Copyright © 2014 Sunil Kumar Sirohi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present study was undertaken to investigate the effect of crude seed powder (CSP) and gross saponins extract (GSE) of seeds of Albizia lebbeck on antimicrobial activity by taking two Gram-positive (Staphylococcus aureus and Bacillus cereus), two Gram-negative (Escherichia coli and Salmonella Typhi) bacteria, and two fungi species (Aspergillus niger and Candida butyric) were taken at 25, 50, 100, 250, and 500 µg levels using agar well diffusion method. Zone of inhibition was increased with increasing of concentration of CSP and saponins which indicates that Gram-negative bacteria (E. coli), Gram-positive bacteria (B. cereus), and A. niger were significantly susceptible to inhibition. Another experiment was conducted to study the effect of GSE and saponins fraction A and B of A. lebbeck supplementation at 6% on DM basis on methane production and other rumen fermentation parameters using in vitro gas production test, by taking three different type diets, that is, high fiber diet (D1, 60R : 40C), medium fiber diet (D2, 50R : 50C), and low fiber diet (D3, 40R : 60C). Significant () increase was seen in IVDMD, methane production; however ammonia nitrogen concentration decreased as compared to control. The methane production was reduced in a range between 12 and 49% by saponin supplemented diets except in case of GSE in D2. Sap A showed the highest methane reduction per 200 mg of truly digested substrate (TDS) than other treatment groups. Results in relation with quantification of methanogens and protozoa by qPCR indicated the decreasing trend with saponins of A. lebbek in comparison with control except total methanogen quantified using mcr-A based primer.