Table of Contents
ISRN Organic Chemistry
Volume 2014 (2014), Article ID 531695, 29 pages
http://dx.doi.org/10.1155/2014/531695
Review Article

Asymmetric Organocatalysis at the Service of Medicinal Chemistry

Department of Industrial Chemistry “Toso Montanari”, School of Science, University of Bologna, V. Risorgimento 4, 40136 Bologna, Italy

Received 4 December 2013; Accepted 30 December 2013; Published 11 March 2014

Academic Editors: J. M. Campagne, G. Li, J. C. Menéndez, and L. Wang

Copyright © 2014 Alfredo Ricci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. I. Dalko and L. Moisan, “In the golden age of organocatalysis,” Angewandte Chemie International Edition, vol. 43, no. 39, pp. 5138–5175, 2004. View at Publisher · View at Google Scholar
  2. B. List, “The ying and yang of asymmetric aminocatalysis,” Chemical Communications, pp. 819–824, 2006. View at Google Scholar
  3. B. List, “Organocatalysis: a complementary catalysis strategy advances organic synthesis,” Advanced Synthesis & Catalysis, vol. 346, no. 9-10, p. 1021, 2004. View at Publisher · View at Google Scholar
  4. M. Nielsen, D. Worgull, T. Zwifel, B. Gschwend, S. Bertelsen, and K. A. Jorgensen, “Mechanisms in aminocatalysis,” Chemical Communications, vol. 47, no. 2, pp. 632–649, 2011. View at Publisher · View at Google Scholar
  5. A. Grossmann and D. Enders, “N-heterocyclic carbene catalyzed domino reactions,” Angewandte Chemie International Edition, vol. 51, no. 2, pp. 314–325, 2012. View at Publisher · View at Google Scholar
  6. P. M. Pihko, Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2009.
  7. K. Maruoka, Asymmetric Phase Transfer Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
  8. E. N. Jacobsen and D. W. C. McMillan, “Organocatalysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 48, pp. 20618–20619, 2010. View at Publisher · View at Google Scholar
  9. D. W. C. McMillan, “Commentary the advent and development of organocatalysis,” Nature, vol. 455, pp. 304–308, 2008. View at Publisher · View at Google Scholar
  10. B. List, “Biocatalysis and organocatalysis: asymmetric synthesis inspired by nature,” in Asymmetric Synthesis: The Essentials, M. Christmann and S. Brase, Eds., pp. 161–165, Wiley-VCH, Weinheim, Germany, 2007. View at Google Scholar
  11. P. I. Dalko and L. Moisan, “In the golden age of organocatalysis,” Angewandte Chemie International Edition, vol. 43, no. 39, pp. 5138–5175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Newhouse, P. S. Baran, and R. W. Hoffmann, “The economies of synthesis,” Chemical Society Reviews, vol. 38, no. 11, pp. 3010–3021, 2009. View at Publisher · View at Google Scholar
  13. D. Enders, M. R. M. Hüttl, C. Grondal, and G. Raabe, “Control of four stereocentres in a triple cascade organocatalytic reaction,” Nature, vol. 441, no. 7095, pp. 861–863, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Carlone, S. Cabrera, M. Marigo, and K. A. Jørgensen, “A new approach for an organocatalytic multicomponent domino asymmetric reaction,” Angewandte Chemie International Edition, vol. 46, no. 7, pp. 1101–1104, 2007. View at Publisher · View at Google Scholar
  15. M. Eichelbaum, B. Testa, and A. Somogyi, Eds., Stereochemical Aspects of Drug Action and Disposition, Spriger, Heidelberg, Germany, 2003.
  16. K. C. Nicolau, D. J. Edmonds, and P. G. Bulger, “Cascade reactions in total synthesis,” Angewandte Chemie International Edition, vol. 45, no. 43, pp. 7134–7186, 2006. View at Publisher · View at Google Scholar
  17. C. Grondal, M. Jeanty, and D. Enders, “Organocatalytic cascade reactions as a new tool in total synthesis,” Nature Chemistry, vol. 2, no. 3, pp. 167–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. de Figueiredo and M. Christman, “Organocatalytic synthesis of drugs and bioactive natural products,” European Journal of Organic Chemistry, no. 16, pp. 2575–2600, 2007. View at Google Scholar
  19. J. Alemán and S. Cabrera, “Applications of asymmetric organocatalysis in medicinal chemistry,” Chemical Society Reviews, vol. 42, no. 2, pp. 774–793, 2013. View at Publisher · View at Google Scholar
  20. H. U. Blaser and E. Schmidt, Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, Germany, 2004.
  21. H. Gröger, “Asymmetric organocatalysis on a technical scale: current status and future challenges,” Organocatalysis, vol. 2007/2, pp. 227–258, 2008. View at Publisher · View at Google Scholar
  22. C. A. Busacca, D. R. Fandrick, J. J. Song, and C. H. Senanayake, “The growing impact of catalysis in the pharmaceutical industry,” Advanced Synthesis and Catalysis, vol. 353, no. 11-12, pp. 1825–1864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. G. P. Howell, “Asymmetric and diastereoselective conjugate addition reactions: C–C bond formation at large scale,” Organic Process Research & Development, vol. 16, no. 7, pp. 1258–1272, 2012. View at Publisher · View at Google Scholar
  24. M. S. Sigman and E. N. Jacobsen, “Schiff base catalysts for the asymmetric strecker reaction identified and optimized from parallel synthetic libraries,” Journal of the American Chemical Society, vol. 120, no. 19, pp. 4901–4902, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Corey and M. J. Grogan, “Enantioselective synthesis of α-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst,” Organic Letters, vol. 1, no. 1, pp. 157–160, 1999. View at Publisher · View at Google Scholar
  26. E. A. C. Davie, S. M. Mennen, Y. Xu, and S. J. Miller, “Asymmetric catalysis mediated by synthetic peptides,” Chemical Reviews, vol. 107, no. 12, pp. 5759–5812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Bernardi, M. Fochi, M. Comes Franchini, and A. Ricci, “Bioinspired organocatalytic asymmetric reactions,” Organic and Biomolecular Chemistry, vol. 10, no. 15, pp. 2911–2922, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. Benning, T. Haller, J. A. Gerlt, and H. M. Holden, “New reactions in the crotonase superfamily: structure of methylmalonyl CoA decarboxylase from Escherichia coli,” Biochemistry, vol. 39, no. 16, pp. 4630–4639, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Nakamura, “Catalytic enantioselective decarboxylative reactions using organocatalysts,” Organic & Biomolecular Chemistry, vol. 12, pp. 394–405, 2014. View at Publisher · View at Google Scholar
  30. J. Lubkoll and H. Wennemers, “Mimicry of polyketide synthases-enantioselective 1,4-addition reactions of malonic acid half-thioesters to nitroolefins,” Angewandte Chemie International Edition, vol. 46, no. 36, pp. 6841–6844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Y. Bae, S. Some, J. Y. - Kim et al., “Organocatalytic enantioselective Michael-addition of malonic acid half-thioesters to β-nitroolefins: from mimicry of polyketide synthases to scalable synthesis of γ-amino acids,” Advanced Synthesis & Catalysis, vol. 353, no. 17, pp. 3196–3202, 2011. View at Publisher · View at Google Scholar
  32. J. Becht, O. Meyer, and G. Helmchen, “Enantioselective syntheses of (-)-(R)-rolipram, (-)-(R)-baclofen and other GABA analogues via rhodium-catalyzed conjugate addition of arylboronic acids,” Synthesis, no. 18, pp. 2805–2810, 2003. View at Google Scholar · View at Scopus
  33. D. M. Barnes, S. J. Wittenberger, J. Zhang et al., “Development of a catalytic enantioselective conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes for the synthesis of endothelin-A antagonist ABT-546. Scope, mechanism, and further application to the synthesis of the antidepressant rolipram,” Journal of the American Chemical Society, vol. 124, no. 44, pp. 13097–13105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. H. N. Yuan, S. Wang, J. Nie, W. Meng, Q. Yao, and J. A. Ma, “Hydrogen-bond-directed enantioselective decarboxylative mannich reaction of β-ketoacids with ketimines: application to the synthesis of anti-HIV drug DPC083,” Angewandte Chemie International Edition, vol. 52, no. 14, pp. 3869–3873, 2013. View at Publisher · View at Google Scholar
  35. X. Xu, T. Furukawa, T. Okino, H. Miyabe, and Y. Takemoto, “Bifunctional-thiourea-catalyzed diastereo- And enantioselective Aza-Henry reaction,” Chemistry, vol. 12, no. 2, pp. 466–476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Zhang, J. Kua, and J. A. McCammon, “Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study,” Journal of the American Chemical Society, vol. 124, no. 35, pp. 10572–10577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J. T. Yli-Kauhaluoma, J. A. Ashley, L. C. Lo Chih-Hung, L. Tucker, M. M. Wolfe, and K. D. Janda, “Anti-metallocene antibodies: a new approach to enantioselective catalysis of the diels-alder reaction,” Journal of the American Chemical Society, vol. 117, no. 27, pp. 7041–7047, 1995. View at Google Scholar · View at Scopus
  38. C. Gioia, A. Hauville, L. Bernardi, F. Fini, and A. Ricci, “Organocatalytic asymmetric diels-Alder reactions of 3-vinylindoles,” Angewandte Chemie International Edition, vol. 47, no. 48, pp. 9236–9239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Hesse, Alkaloids, Nature Curse or Blessing?Wiley-VCH, New York, NY, USA, 2002.
  40. J. E. Saxton, “Recent progress in the chemistry of the monoterpenoid indole alkaloids,” Natural Product Reports, vol. 14, no. 6, pp. 559–590, 1997. View at Publisher · View at Google Scholar
  41. G. Abbiati, V. Canevari, D. Facoetti, and E. Rossi, “Diels-alder reactions of 2-vinylindoles with open-chain C=C dienophiles,” European Journal of Organic Chemistry, vol. 2007, no. 3, pp. 517–525, 2007. View at Google Scholar
  42. K. S. Gunmudsson, P. R. Sebahar, L. D'Aurora Richardson et al., “Substituted tetrahydrocarbazoles with potent activity against human papillomaviruses,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 13, pp. 3489–3492, 2009. View at Publisher · View at Google Scholar
  43. S. Shimizu, K. Ohori, T. Arai, H. Sasai, and M. Shibasaki, “A catalytic asymmetric synthesis of tubifolidine,” Journal of Organic Chemistry, vol. 63, no. 21, pp. 7547–7551, 1998. View at Google Scholar · View at Scopus
  44. Y. Hoashi, T. Yabuta, and Y. Takemoto, “Bifunctional thiourea-catalyzed enantioselective double Michael reaction of γ,δ-unsaturated β-ketoester to nitroalkene: asymmetric synthesis of (-)-epibatidine,” Tetrahedron Letters, vol. 45, no. 50, pp. 9185–9188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. S. Haynes, P. A. Stupple, and D. J. Dixon, “Organocatalytic asymmetric total synthesis of (R)-rolipram and formal synthesis of (3S,4R)-paroxetine,” Organic Letters, vol. 10, no. 7, pp. 1389–1391, 2008. View at Publisher · View at Google Scholar
  46. R. P. Herrera, V. Sgarzani, L. Bernardi, and A. Ricci, “Catalytic enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst,” Angewandte Chemie International Edition, vol. 44, no. 40, pp. 6576–6579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Maruoka, “Practical aspects of recent asymmetric phase-transfer catalysis,” Organic Process Research & Development, vol. 12, no. 4, pp. 679–697, 2008. View at Publisher · View at Google Scholar
  48. T. Shioiri, “Chiral phase transfer catalysis,” in Handbook of Phase Transfer Catalysis, Y. Sasson and R. Nuemann, Eds., chapter 14, pp. 462–479, Blackie Academic & Professional, London, UK, 1997. View at Google Scholar
  49. A. Nelson, “Asymmetric phase-transfer catalysis,” Angewandte Chemie International Edition, vol. 38, no. 11, pp. 1583–1585, 1999. View at Google Scholar
  50. K. Maruoka and T. Ooi, “Enantioselective amino acid synthesis by chiral phase-transfer catalysis,” Chemical Reviews, vol. 103, no. 8, pp. 3013–3028, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. J. O'Donnell, “The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral schiff base esters,” Accounts of Chemical Research, vol. 37, no. 8, pp. 506–517, 2004. View at Publisher · View at Google Scholar
  52. B. Lygo and B. I. Andrews, “Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts:  asymmetric alkylation of glycine imines,” Accounts of Chemical Research, vol. 37, no. 8, pp. 518–525, 2004. View at Publisher · View at Google Scholar
  53. S. Shirakawa and K. Maruoka, in Catalytic Asymmetric Synthesis, I. Ojima, Ed., chapter 2C, p. 95, Wiley, Hoboken, NJ, USA, 3rd edition, 2010.
  54. K. Maruoka, “Highly practical amino acid and alkaloid synthesis using designer chiral phase transfer catalysts as high-performance organocatalysts,” The Chemical Record, vol. 10, no. 5, pp. 254–259, 2010. View at Publisher · View at Google Scholar
  55. S. Shirakawa and K. Maruoka, “Recent developments in asymmetric phase-transfer reactions,” Angewandte Chemie International Edition, vol. 52, no. 16, pp. 4312–4348, 2013. View at Publisher · View at Google Scholar
  56. U. H. Dolling, P. Davis, and E. J. J. Grabowski, “Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis,” Journal of the American Chemical Society, vol. 106, no. 2, pp. 446–447, 1984. View at Publisher · View at Google Scholar
  57. R. S. E. Conn, A. V. Lovell, S. Karaday, and L. M. Weinstock, “Chiral Michael addition: methyl vinyl ketone addition catalyzed by Cinchona alkaloid derivatives,” Journal of Organic Chemistry, vol. 51, no. 24, pp. 4710–4711, 1986. View at Publisher · View at Google Scholar
  58. E. J. Cragoe Jr., O. W. Woltersdorf Jr., N. P. Gould et al., “Agents for the treatment of brain edema. 2. [(2,3,9,9a-tetrahydro-3-oxo-9a-substituted-1H-fluoren-7-yl)oxy]alkanoic acids and some of their analogues,” Journal of Medicinal Chemistry, vol. 29, no. 5, pp. 825–841, 1986. View at Google Scholar · View at Scopus
  59. J. P. Scott, M. S. Ashwood, K. M. J. Brands et al., “Development of a phase transfer catalyzed asymmetric synthesis for an estrogen receptor beta selective agonist,” Organic Process Research and Development, vol. 12, no. 4, pp. 723–730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Baschieri, L. Bernardi, A. Ricci, S. Suresh, and M. F. A. Adamo, “Catalytic asymmetric conjugate addition of nitroalkanes to 4-nitro5-styrylisoxazoles,” Angewandte Chemie International Edition, vol. 48, no. 49, pp. 9342–9345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. France, D. J. Guerin, S. J. Miller, and T. Letchka, “Nucleophilic chiral amines as catalysts in asymmetric synthesis,” Chemical Reviews, vol. 103, no. 8, pp. 2985–3012, 2003. View at Publisher · View at Google Scholar
  62. T. Marcelli and H. Hiemstra, “Cinchona alkaloids in asymmetric organocatalysis,” Synthesis, no. 8, Article ID E26109SS, pp. 1229–1279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Hiemstra and H. Wynberg, “Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral .beta.-hydroxy amines. A mechanistic study of homogeneous catalytic asymmetric synthesis,” Journal of the American Chemical Society, vol. 103, no. 2, pp. 417–430, 1981. View at Publisher · View at Google Scholar
  64. M. Bella and K. A. Jørgensen, “Organocatalytic enantioselective conjugate addition to alkynones,” Journal of the American Chemical Society, vol. 126, no. 18, pp. 5672–5673, 2004. View at Publisher · View at Google Scholar
  65. H. Li, Y. Wang, L. Tang et al., “Stereocontrolled creation of adjacent quaternary and tertiary stereocenters by a catalytic conjugate addition,” Angewandte Chemie International Edition, vol. 44, no. 1, pp. 105–108, 2004. View at Google Scholar
  66. X. D. Liu, L. J. Deng, H. J. Song, H. Z. Jia, and R. Wang, “Asymmetric Aza-Mannich addition: synthesis of modified chiral 2-(Ethylthio)-thiazolone derivatives with anticancer potency,” Organic Letters, vol. 13, no. 6, pp. 1494–1497, 2011. View at Publisher · View at Google Scholar
  67. L. E. Brown, K. C. Cheng, W. Wei et al., “Discovery of new antimalarial chemotypes through chemical methodology and library development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 17, pp. 6775–6780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Kaneko, T. Yoshino, T. Katoh, and S. Terashima, “Synthetic studies of huperzine A and its fluorinated analogues. 1. Novel asymmetric syntheses of an enantiomeric pair of huperzine A,” Tetrahedron, vol. 54, no. 21, pp. 5471–5484, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Akiyama, J. Itoh, K. Yokota, and K. Fuchibe, “Enantioselective mannich-type reaction catalyzed by a chiral Brønsted acid,” Angewandte Chemie International Edition, vol. 43, no. 12, pp. 1566–1568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Uraguchi and M. Terada, “Chiral Brønsted acid-catalyzed direct mannich reactions via electrophilic activation,” Journal of the American Chemical Society, vol. 126, no. 17, pp. 5356–5357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Hoffmann, A. M. Seyad, and B. List, “A powerful Brønsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines,” Angewandte Chemie International Edition, vol. 44, no. 45, pp. 7424–7427, 2005. View at Publisher · View at Google Scholar
  72. M. Rueping, J. Dufour, and F. R. Schoepke, “Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products,” Green Chemistry, vol. 13, no. 5, pp. 1084–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Rueping, M. Stoeckel, E. Sugiono, and T. Theissmann, “Asymmetric metal-free synthesis of fluoroquinolones by organocatalytic hydrogenation,” Tetrahedron, vol. 66, no. 33, pp. 6565–6568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Hayakawa, S. Atarashi, S. Yokohama, M. Imamura, K. Sakano, and M. Furukawa, “Synthesis and antibacterial activities of optically active ofloxacin,” Antimicrobial Agents and Chemotherapy, vol. 29, no. 1, pp. 163–164, 1986. View at Publisher · View at Google Scholar
  75. D. Seiyaku, “The s-(-) isomer of 7,8-difluoro-2,3-dihydro-3-methyl-4H-1,4-benzoxazine can be utilized in the synthesis of the optically active form of Ofloxacin known as Levofloxacin. Levofloxacin is 8 to 128 times more active than Ofloxacin depending upon the bacteria tested,” Drugs Future, vol. 17, no. 7, pp. 559–563, 1992. View at Google Scholar
  76. M. Rueping, A. P. Antonchick, and T. Theissmann, “A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids,” Angewandte Chemie International Edition, vol. 45, no. 22, pp. 3683–3686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Chen, X. Xu, H. Liu, L. Cun, and L. Gong, “Highly enantioselective organocatalytic Biginelli reaction,” Journal of the American Chemical Society, vol. 128, no. 46, pp. 14802–14803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Huang, F. Yang, and C. Zhu, “Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst:  asymmetric synthesis of dihydropyrimidines,” Journal of the American Chemical Society, vol. 127, no. 47, pp. 16386–16387, 2005. View at Publisher · View at Google Scholar
  79. P. Melchiorre, M. Marigo, A. Carlone, and G. Bartoli, “Asymmetric aminocatalysis-gold rush in organic chemistry,” Angewandte Chemie International Edition, vol. 47, no. 33, pp. 6138–6171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. C. F. Barbas III, “Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus,” Angewandte Chemie International Edition, vol. 47, no. 1, pp. 42–47, 2008. View at Publisher · View at Google Scholar
  81. Z. G. Hajos and D. R. Parrish, “Asymmetric synthesis of bicyclic intermediates of natural product chemistry,” Journal of Organic Chemistry, vol. 39, no. 12, pp. 1615–1621, 1974. View at Publisher · View at Google Scholar
  82. U. Eder, G. Sauer, and R. Wiechert, “New type of asymmetric cyclization to optically active steroid CD partial structures,” Angewandte Chemie International Edition in English, vol. 10, no. 7, pp. 496–497, 1971. View at Publisher · View at Google Scholar
  83. B. List, R. A. Lerner, and C. F. Barbas III, “Proline-catalyzed direct asymmetric aldol reactions,” Journal of the American Chemical Society, vol. 122, no. 10, pp. 2395–2396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Notz, F. Tanaka, and C. F. Barbas III, “Enamine-based organocatalysis with proline and diamines:  the development of direct catalytic asymmetric aldol, mannich, Michael, and diels-alder reactions,” Accounts of Chemical Research, vol. 37, no. 8, pp. 580–591, 2004. View at Publisher · View at Google Scholar
  85. W. Notz and B. List, “Catalytic asymmetric synthesis of anti-1,2-diols,” Journal of the American Chemical Society, vol. 122, no. 30, pp. 9336–7387, 2000. View at Publisher · View at Google Scholar
  86. A. B. Northrup and D. W. C. MacMillan, “The first direct and enantioselective cross-aldol reaction of aldehydes,” Journal of the American Chemical Society, vol. 124, no. 24, pp. 6798–6799, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. B. List, “Direct catalytic asymmetric α-amination of aldehydes,” Journal of the American Chemical Society, vol. 124, no. 20, pp. 5656–5657, 2002. View at Publisher · View at Google Scholar
  88. N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig, and K. A. Jørgensen, “Direct l-proline-catalyzed asymmetric α-amination of ketones,” Journal of the American Chemical Society, vol. 124, no. 22, pp. 6254–6255, 2002. View at Publisher · View at Google Scholar
  89. A. B. Northrup and D. W. C. MacMillan, “The first general enantioselective catalytic Diels-Alder reaction with simple (α,β-unsaturated ketones,” Journal of the American Chemical Society, vol. 124, no. 11, pp. 2458–2460, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. R. M. Wilson, W. S. Jen, and D. W. C. MacMillan, “Enantioselective organocatalytic intramolecular Diels-Alder reactions. The asymmetric synthesis of solanapyrone D,” Journal of the American Chemical Society, vol. 127, no. 33, pp. 11616–11617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. J. F. Austin and D. W. C. MacMillan, “Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis,” Journal of the American Chemical Society, vol. 124, no. 7, pp. 1172–1173, 2002. View at Publisher · View at Google Scholar
  92. N. A. Paras and D. W. C. MacMillan, “The enantioselective organocatalytic 1,4-addition of electron-rich benzenes to α,β-unsaturated aldehydes,” Journal of the American Chemical Society, vol. 124, no. 27, pp. 7894–7895, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. S. P. Brown, N. C. Goodwin, and D. W. C. MacMillan, “The first enantioselective organocatalytic Mukaiyama-Michael reaction: a direct method for the synthesis of enantioenriched γ-butenolide architecture,” Journal of the American Chemical Society, vol. 125, no. 5, pp. 1192–1194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. S. G. Ouellet, J. B. Tuttle, and D. W. C. MacMillan, “Enantioselective organocatalytic hydride reduction,” Journal of the American Chemical Society, vol. 127, no. 1, pp. 32–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. F. Austin, S. G. Kim, C. J. Sinz, W. J. Xiao, and D. W. C. MacMillan, “Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition-cyclization strategy: synthesis of (-)-flustramine B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5482–5487, 2004. View at Publisher · View at Google Scholar
  96. H. P. Rang, M. M. Dale, J. M. Ritter, and P. Gardner, Pharmacology, Churchill Livingstone, Philadelphia, Pa, USA, 4th edition, 2001.
  97. H. J. Bardsley and A. K. Daly, “The therapeutic use of r-warfarin as anticoagulant,” Patent Cooperation Treaty International Application WO, 0043003, 2000.
  98. A. Robinson and H. Y. Li, “The first practical asymmetric synthesis of R and S-Warfarin,” Tetrahedron Letters, vol. 37, no. 46, pp. 8321–8324, 1996. View at Publisher · View at Google Scholar
  99. Y. Tsuchiya, Y. Hamashima, and M. Sodeoka, “A new entry to Pd–H chemistry: catalytic asymmetric conjugate reduction of enones with EtOH and a highly enantioselective synthesis of warfarin,” Organic Letters, vol. 8, no. 21, pp. 4851–4854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Halland, T. Hansen, and K. A. Jørgensen, “Organocatalytic asymmetric Michael reaction of cyclic 1,3-dicarbonyl compounds and α ,β-unsaturated ketones-a highly atom-economic catalytic one-step formation of optically active warfarin anticoagulant,” Angewandte Chemie International Edition, vol. 42, no. 40, pp. 4955–4957, 2003. View at Publisher · View at Google Scholar
  101. N. Halland, K. A. Jørgensen, and T. Hansen, Patent Cooperation Treaty International Application, WO 03/050105, 9, 413, 2003.
  102. H. Kim, C. Yen, P. Preston, and J. Chin, “Substrate-directed stereoselectivity in vicinal diamine-catalyzed synthesis of warfarin,” Organic Letters, vol. 8, no. 23, pp. 5239–5242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Yang, L. Li, K. Jiang, J. Jiang, G. Lai, and L. Xu, “Highly enantioselective synthesis of warfarin and its analogs by means of cooperative LiClO4/DPEN-catalyzed Michael reaction: enantioselectivity enhancement and mechanism,” Tetrahedron, vol. 66, no. 51, pp. 9708–9713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Rogozińska, A. Adamkiewicz, and J. Mlynarsky, “Efficient “on water” organocatalytic protocol for the synthesis of optically pure warfarin anticoagulant,” Green Chemistry, vol. 13, no. 5, pp. 1155–1157, 2011. View at Publisher · View at Google Scholar
  105. X. Zhu, A. Lin, Y. Shi, J. Guo, C. Zhu, and Y. Cheng, “Enantioselective synthesis of polycyclic coumarin derivatives catalyzed by an in situ formed primary amine-imine catalyst,” Organic Letters, vol. 13, no. 16, pp. 4382–4385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Dong and D. M. Du, “Highly enantioselective synthesis of warfarin and its analogs catalysed by primary amine-phosphinamide bifunctional catalysts,” Organic & Biomolecular Chemistry, vol. 10, no. 40, pp. 8125–8131, 2012. View at Publisher · View at Google Scholar
  107. M. Leven, J. M. Neudörfl, and B. Goldfuss, “Metal-mediated aminocatalysis provides mild conditions: enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions,” Beilstein Journal of Organic Chemistry, vol. 9, pp. 155–165, 2013. View at Publisher · View at Google Scholar
  108. J. W. Xie, L. Yue, W. Chen et al., “Highly enantioselective Michael addition of cyclic 1,3-dicarbonyl compounds to α,β-unsaturated ketones,” Organic Letters, vol. 9, no. 3, pp. 413–415, 2007. View at Publisher · View at Google Scholar
  109. T. E. Kristensen, K. Vestli, F. K. Hansen, and T. Hansen, “New phenylglycine-derived primary amine organocatalysts for the preparation of optically active warfarin,” European Journal of Organic Chemistry, vol. 2009, no. 30, pp. 5185–5191, 2009. View at Publisher · View at Google Scholar
  110. Z. H. Dong, L. J. Wang, X. H. Chen, X. H. Liu, L. L. Lin, and X. M. Feng, “Organocatalytic enantioselective Michael addition of 4-hydroxycoumarin to α ,β-unsaturated ketones: a simple synthesis of warfarin,” European Journal of Organic Chemistry, no. 30, pp. 5192–5197, 2009. View at Publisher · View at Google Scholar
  111. D. V. Paone, A. W. Shaw, D. N. Nguyen et al., “Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-(3R,6S)-6-(2,3- difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl-4-(2-oxo-2, 3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974),” Journal of Medicinal Chemistry, vol. 50, no. 23, pp. 5564–5567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Palucki, I. Davies, D. Steinhuebel, and J. Rosen, Patent Cooperation Treaty International Application WO2007120589, 2007.
  113. F. Xu, M. Zacuto, N. Yoshikawa et al., “Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine,” Journal of Organic Chemistry, vol. 75, no. 22, pp. 7829–7841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. D. P. Steinhuebel, S. W. Krska, A. Alorati et al., “Asymmetric hydrogenation of protected allylic amines,” Organic Letters, vol. 12, no. 18, pp. 4201–4203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. C. S. Burgey, D. V. Paone, A. W. Shaw et al., “Synthesis of the (3R,6S)-3-amino-6-(2,3-difluorophenyl)azepan-2-one of telcagepant (MK-0974), a calcitonin gene-related peptide receptor antagonist for the treatment of migraine headache,” Organic Letters, vol. 10, no. 15, pp. 3235–3238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Gotoh, H. Ishikawa, and Y. Hayashi, “Diphenylprolinol silyl ether as catalyst of an asymmetric, catalytic, and direct Michael reaction of nitroalkanes with α,β-unsaturated aldehydes,” Organic Letters, vol. 9, no. 25, pp. 5307–5309, 2007. View at Publisher · View at Google Scholar
  117. Y. Wang, P. Li, X. Liang, T. Y. Zhang, and J. Ye, “An efficient enantioselective method for asymmetric Michael addition of nitroalkanes to α,β-unsaturated aldehydes,” Chemical Communications, no. 10, pp. 1232–1234, 2008. View at Publisher · View at Google Scholar
  118. Y. Hayashi, H. Gotoh, T. Hayashi, and M. Shoji, “Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes,” Angewandte Chemie International Edition, vol. 44, no. 27, pp. 4212–4215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Marigo, T. C. Wabnitz, D. Fielenbach, and K. A. Jørgensen, “Enantioselective organocatalyzed sulfenylation of aldehydes,” Angewandte Chemie International Edition, vol. 44, no. 5, pp. 794–797, 2005. View at Publisher · View at Google Scholar
  120. J. Åhman, M. Birch, S. J. Haycock-Lewandowski, J. Long, and A. Wilder, “Process research and scale-up of a commercialisable route to maraviroc (UK-427,857), a CCR-5 receptor antagonist,” Organic Process Research & Development, vol. 12, no. 6, pp. 1104–1113, 2008. View at Publisher · View at Google Scholar
  121. S. J. Haycock-Lewandowski, A. Wilder, and J. Åhman, “Development of a bulk enabling route to maraviroc (UK-427,857), a CCR-5 receptor antagonist,” Organic Process Research & Development, vol. 12, no. 6, pp. 1094–1103, 2008. View at Publisher · View at Google Scholar
  122. G.-L. Zhao, S. Lin, A. Korotvička, L. Deiana, M. Kullberg, and A. Córdova, “Asymmetric synthesis of maraviroc (UK-427,857),” Advanced Synthesis & Catalysis, vol. 352, no. 13, pp. 2291–2298, 2010. View at Publisher · View at Google Scholar
  123. M. S. Yu, I. Lantos, Z. Peng, J. Yu, and T. Cacchio, “Asymmetric synthesis of (-)-paroxetine using PLE hydrolysis,” Tetrahedron Letters, vol. 41, no. 30, pp. 5647–5651, 2000. View at Google Scholar · View at Scopus
  124. J. M. Palomo, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, and J. M. Grison, “Enzymatic resolution of (±)-trans-4-(4′-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate, an intermediate in the synthesis of (−)-Paroxetine,” Tetrahedron, vol. 13, no. 21, pp. 2375–2361, 2002. View at Publisher · View at Google Scholar
  125. M. Amat, J. Bosch, J. Hidalgo et al., “Synthesis of enantiopure trans-3,4-disubstituted piperidines. An enantiodivergent synthesis of (+)- and (-)-paroxetine,” Journal of Organic Chemistry, vol. 65, no. 10, pp. 3074–3084, 2000. View at Publisher · View at Google Scholar · View at Scopus
  126. T. A. Johnson, D. O. Jang, W. Slafer, M. D. Curtius, and P. Beak, “Asymmetric carbon-carbon bond formations in conjugate additions of lithiated N-Boc allylic and benzylic amines to nitroalkenes:  enantioselective synthesis of substituted piperidines, pyrrolidines, and pyrimidinones,” Journal of the American Chemical Society, vol. 124, no. 39, pp. 11689–11698, 2002. View at Publisher · View at Google Scholar
  127. G. Valero, J. Schimer, I. Cisarova, J. Vesely, A. Moyano, and R. Rios, “Highly enantioselective organocatalytic synthesis of piperidines. Formal synthesis of (-)-Paroxetine,” Tetrahedron Letters, vol. 50, no. 17, pp. 1943–1946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Brandau, A. Landa, J. Franzen, M. Marigo, and K. A. Jorgensen, “Organocatalytic conjugate addition of malonates to α ,β-unsaturated aldehydes: asymmetric formal synthesis of (-)-paroxetine, chiral lactams, and lactones,” Angewandte Chemie International Edition, vol. 45, no. 26, pp. 4305–4309, 2006. View at Publisher · View at Google Scholar
  129. C. Lagisetti, A. Pourpak, Q. Jiang et al., “Antitumor compounds based on a natural product consensus pharmacophore,” Journal of Medicinal Chemistry, vol. 51, no. 19, pp. 6220–6224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. X. Jiang, Y. Cao, Y. Wang, L. Liu, F. Shen, and R. Wang, “A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue,” Journal of the American Chemical Society, vol. 132, no. 43, pp. 15328–15333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Kotha, A. C. Deb, K. Lahiri, and E. Manivannan, “Selected synthetic strategies to spirocyclics,” Synthesis, no. 2, pp. 165–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. E. J. Corey, “Catalytic enantioselective diels-alder reactions: methods, mechanistic fundamentals, pathways, and applications,” Angewandte Chemie International Edition, vol. 114, pp. 1724–1741, 2002. View at Google Scholar
  133. P. R. Sebahar and R. M. Williams, “The asymmetric total synthesis of (+)- and (-)-spirotryprostatin B,” Journal of the American Chemical Society, vol. 122, no. 23, pp. 5666–5667, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. B. M. Trost, N. Cramer, and S. M. Silverman, “Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladium-catalyzed trimethylenemethane-[3+2]-cycloaddition,” Journal of the American Chemical Society, vol. 129, no. 41, pp. 12396–12397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. A. B. Dounay and L. E. Overman, “The asymmetric intramolecular heck reaction in natural product total synthesis,” Chemical Reviews, vol. 103, no. 8, pp. 2945–2963, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Madin, C. J. O'Donnell, T. Oh, D. W. Old, L. E. Overman, and M. J. Sharp, “Use of the intramolecular heck reaction for forming congested quaternary carbon stereocenters. Stereocontrolled total synthesis of (±)-gelsemine,” Journal of the American Chemical Society, vol. 127, no. 51, pp. 18054–18065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. J. J. Liu and Z. Zhang, Patent Cooperation Treaty International Application WO, 2008/055812, 2008.
  138. P. Chène, “Inhibiting the p53-MDM2 interaction: an important target for cancer therapy,” Nature Reviews Cancer, vol. 3, pp. 102–109, 2003. View at Publisher · View at Google Scholar
  139. G. Bencivenni, L. Wu, A. Mazzanti et al., “Targeting structural and stereochemical complexity by organocascade catalysis: construction of spirocyclic oxindoles having multiple stereocenters,” Angewandte Chemie International Edition, vol. 48, no. 39, pp. 7200–7203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. C. U. Kim, W. Lew, M. A. Williams et al., “Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity,” Journal of the American Chemical Society, vol. 119, no. 4, pp. 681–690, 1997. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Von Itzstein, W.-Y. Wu, G. B. Kok et al., “Rational design of potent sialidase-based inhibitors of influenza virus replication,” Nature, vol. 363, no. 6428, pp. 418–423, 1993. View at Publisher · View at Google Scholar · View at Scopus
  142. V. Farina and J. D. Brown, “Tamiflu: the supply problem,” Angewandte Chemie International Edition, vol. 45, no. 44, pp. 7330–7334, 2006. View at Publisher · View at Google Scholar
  143. M. Shibasaki and M. Kanai, “Synthetic strategies for oseltamivir phosphate,” European Journal of Organic Chemistry, vol. 2008, no. 11, pp. 1839–1850, 2008. View at Publisher · View at Google Scholar
  144. Y. Y. Yeung, S. Hong, and E. J. Corey, “A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid,” Journal of the American Chemical Society, vol. 128, no. 19, pp. 6310–6311, 2006. View at Publisher · View at Google Scholar
  145. Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, and M. Shibasaki, “De novo synthesis of tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3,” Journal of the American Chemical Society, vol. 128, no. 19, pp. 6312–6313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Ishikawa, T. Suzuki, and Y. Hayashi, “High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three “one-pot” operations,” Angewandte Chemie International Edition, vol. 48, no. 7, pp. 1304–1307, 2009. View at Publisher · View at Google Scholar
  147. H. Ishikawa, T. Suzuki, H. Orita, T. Uchimaru, and Y. Hayashi, “High-yielding synthesis of the anti-influenza neuraminidase inhibitor (-)-oseltamivir by two “one-pot” sequences,” Chemistry, vol. 16, no. 42, pp. 12616–12626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Zhu, S. Yu, Y. Wang, and D. Ma, “Organocatalytic Michael addition of aldehydes to protected 2-amino-1-nitroethenes: the practical syntheses of oseltamivir (Tamiflu) and substituted 3-aminopyrrolidines,” Angewandte Chemie International Edition, vol. 49, no. 27, pp. 4656–4660, 2010. View at Publisher · View at Google Scholar
  149. J. Rehák, M. Huťka, A. Latika et al., “Thiol-free synthesis of oseltamivir and its analogues via organocatalytic Michael additions of oxyacetaldehydes to 2-acylaminonitroalkenes,” Synthesis, vol. 44, pp. 2424–2430, 2012. View at Google Scholar
  150. J. Weng, Y. B. Li, R. B. Wang, and G. Lu, “Organocatalytic Michael reaction of nitroenamine derivatives with aldehydes: short and efficient esymmetric eynthesis of (-)-oseltamivir,” ChemCatChem, vol. 4, no. 7, pp. 1007–1012, 2012. View at Google Scholar
  151. V. Hajzer, A. Latika, J. Durmis, and R. Sebesta, “Enantioselective Michael addition of the 2-(1-ethylpropoxy)acetaldehyde to N-[(1Z)-2-nitroethenyl]acetamide-optimization of the key step in the organocatalytic oseltamivir synthesis,” Helvetica Chimica Acta, vol. 95, no. 12, pp. 2421–2428, 2012. View at Publisher · View at Google Scholar
  152. T. Muakaiyama, H. Ishikawa, H. Koshino, and Y. Hayashi, “One-pot synthesis of (-)-oseltamivir and mechanistic insights into the organocatalyzed Michael reaction,” Chemistry, vol. 19, no. 52, pp. 17789–17800, 2013. View at Publisher · View at Google Scholar
  153. K. Yamatsugu, L. Yin, S. Kamijo, Y. Kimura, M. Kanai, and M. Shibasaki, “A synthesis of tamiflu by using a barium-catalyzed asymmetric diels-alder-type reaction,” Angewandte Chemie International Edition, vol. 48, no. 6, pp. 1070–1076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. F. Cozzi, “Immobilization of organic catalysts: when, why, and how?” Advanced Synthesis & Catalysis, vol. 348, no. 12-13, pp. 1367–1390, 2006. View at Publisher · View at Google Scholar
  155. T. E. Christensen and T. Hansen, “Polymer-supported chiral organocatalysts: synthetic strategies for the road towards affordable polymeric immobilization,” European Journal of Organic Chemistry, vol. 17, pp. 3179–3204, 2010. View at Google Scholar
  156. A. L. W. Demuynck, L. Peng, F. De-Clippel, J. Vanderleyden, P. A. Jacobs, and B. F. Sels, “Solid acids as heterogeneous support for primary amino acid-derived diamines in direct asymmetric aldol reactions,” Advanced Synthesis and Catalysis, vol. 353, no. 5, pp. 725–732, 2011. View at Publisher · View at Google Scholar · View at Scopus