Table of Contents
ISRN Optics
Volume 2014 (2014), Article ID 545961, 7 pages
http://dx.doi.org/10.1155/2014/545961
Research Article

Designing an Ultra-Negative Dispersion Photonic Crystal Fiber with Square-Lattice Geometry

Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302, India

Received 8 February 2014; Accepted 6 March 2014; Published 1 April 2014

Academic Editors: Y. S. Kivshar and S. Shi

Copyright © 2014 Partha Sona Maji and Partha Roy Chaudhuri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Optical Fiber Technology, vol. 5, no. 3, pp. 305–330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. C. Knight, “Photonic crystal fibers,” Nature, vol. 424, no. 6950, pp. 847–851, 2003. View at Publisher · View at Google Scholar
  3. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technology Letters, vol. 15, no. 4, pp. 540–542, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Optics Express, vol. 13, no. 2, pp. 627–635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Prabhakar, A. Peer, V. Rastogi, and A. Kumar, “Large-effective-area dispersion-compensating fiber design based on dual-core microstructure,” Applied Optics, vol. 52, no. 19, pp. 4505–4509, 2013. View at Publisher · View at Google Scholar
  6. G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Optics Express, vol. 10, no. 17, pp. 899–908, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. D. Engeness, M. Ibanescu, S. G. Johnson et al., “Dispersion tailoring and compensation by modal interactions in Omni Guide fibers,” Optics Express, vol. 11, no. 10, pp. 1175–1196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 20, no. 10, pp. 1958–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L.-P. Shen, W.-P. Huang, and S.-S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” Journal of Lightwave Technology, vol. 21, no. 7, pp. 1644–1651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zsigri, J. Lægsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” Journal of Optics A: Pure and Applied Optics, vol. 6, no. 7, pp. 717–720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technology Letters, vol. 16, no. 6, pp. 1516–1518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Optics Letters, vol. 29, no. 23, pp. 2725–2727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Yang, Y. Zhang, X. Peng et al., “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Optics Express, vol. 14, no. 7, pp. 3015–3023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Zhao, G. Zhou, L. Shuguang et al., “Photonic crystal fiber for dispersion compensation,” Applied Optics, vol. 47, no. 28, pp. 5190–5196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kim, C.-S. Kee, D.-K. Ko, J. Lee, and K. Oh, “A dual-concentric-core photonic crystal fiber for broadband dispersion compensation,” Journal of the Korean Physical Society, vol. 49, no. 4, pp. 1434–1437, 2006. View at Google Scholar · View at Scopus
  16. F. Poli, M. Foroni, M. Bottacini et al., “Single-mode regime of square-lattice photonic crystal fibers,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 22, no. 8, pp. 1655–1661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Optics Express, vol. 12, no. 5, pp. 941–946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. S. J. Russell, E. Marin, A. Díez, S. Guenneau, and A. B. Movchan, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Optics Express, vol. 11, no. 20, pp. 2555–2560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Lee, P. S. Ma, I. K. Lee, H. W. Kim, and Y. Y. Kim, “Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates,” Applied Physics Letters, vol. 98, no. 1, Article ID 011909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics, Academic Press, San Diego, Calif, USA, 4th edition, 2007.
  21. CUDOS, “MOF utilities,” http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml.
  22. T. P. White, B. T. Kuhlmey, R. C. McPhedran et al., “Multipole method for microstructured optical fibers. I. Formulation,” Journal of the Optical Society of America B: Optical Physics, vol. 19, no. 10, pp. 2322–2330, 2002. View at Google Scholar · View at Scopus
  23. B. T. Kuhlmey, T. P. White, G. Renversez et al., “Multipole method for microstructured optical fibers. II. Implementation and results,” Journal of the Optical Society of America B: Optical Physics, vol. 19, no. 10, pp. 2331–2340, 2002. View at Google Scholar · View at Scopus
  24. “Corning SMF-28 CPC6 single-mode optical fibre,” Product Information, Corning, Ithaca, NY, USA, 1998.