Table of Contents
ISRN Optics
Volume 2014, Article ID 580262, 10 pages
http://dx.doi.org/10.1155/2014/580262
Research Article

Nonclassical Effects of Light in Fifth Harmonic Generation up to First-Order Hamiltonian Interaction

1Department of Physics, R. S. More College, Vinoba Bhave University, Hazaribag, Govindpur 828109, India
2Department of Physics, Sindri College, Vinoba Bhave University, Hazaribag, Sindri 828122, India
3Department of Physics, P. K. R. M. College, Vinoba Bhave University, Hazaribag, Dhanbad 826004, India

Received 3 November 2013; Accepted 30 December 2013; Published 9 March 2014

Academic Editors: O. Frazão and V. Matejec

Copyright © 2014 Rajendra Pratap et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The nonclassical effects of light in the fifth harmonic generation are investigated by quantum mechanically up to the first-order Hamiltonian interaction. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The occurrence of amplitude squeezing effects in both quadratures of the radiation field in the fundamental mode is investigated and found to be dependent on the selective phase values of the field amplitude. The photon statistics in the fundamental mode have also been investigated and found to be sub-Poissonian in nature. It is observed that there is no possibility to produce squeezed light in the harmonic mode up to first-order Hamiltonian interaction. Further, we have found that the normal squeezing in the harmonic mode directly depends upon the fifth power of the field amplitude of the initial pump field up to second-order Hamiltonian interaction. This gives a method of converting higher-order squeezing in the fundamental mode into normal squeezing in the harmonic mode and vice versa. The analytic expression of fifth-order squeezing of the fundamental mode in the fifth harmonic generation is established.