Table of Contents
ISRN Anatomy
Volume 2014, Article ID 621982, 9 pages
http://dx.doi.org/10.1155/2014/621982
Research Article

Three-Dimensional Structure and Disposition of the Air Conducting and Gas Exchange Conduits of the Avian Lung: The Domestic Duck (Cairina moschata)

1Department of Veterinary Anatomy & Physiology, University of Nairobi, Riverside Drive, P.O. Box 30197, Nairobi 00100, Kenya
2Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland

Received 28 October 2013; Accepted 2 December 2013; Published 5 February 2014

Academic Editors: T. Aire, C. Casteleyn, and P. C. Dechow

Copyright © 2014 A. N. Makanya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Hazelhoff, “Structure and function of the lung of birds,” Poultry Science, vol. 30, pp. 3–10, 1951. View at Google Scholar
  2. W. L. Bretz and K. Schmidt-Nielsen, “Bird respiration: flow patterns in the duck lung,” Journal of Experimental Biology, vol. 54, no. 1, pp. 103–118, 1971. View at Google Scholar · View at Scopus
  3. C. G. Farmer and K. Sanders, “Unidirectional airflow in the lungs of alligators,” Science, vol. 327, no. 5963, pp. 338–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. N. Makanya and V. Djonov, “Development and spatial organization of the air conduits in the lung of the domestic fowl, gallus Gallus variant domesticus,” Microscopy Research and Technique, vol. 71, no. 9, pp. 689–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Scheid and J. Piiper, “Cross-current gas exchange in avian lungs: effects of reversed parabronchial air flow in ducks,” Respiration Physiology, vol. 16, no. 3, pp. 304–312, 1972. View at Google Scholar · View at Scopus
  6. P. Scheid, “Mechanisms of gas exchange in bird lungs,” Reviews of Physiology Biochemistry and Pharmacology, vol. 86, pp. 137–186, 1979. View at Google Scholar · View at Scopus
  7. P. Scheid, H. Slama, and H. Willmer, “Volume and ventilation of air sacs in ducks studied by inert gas wash out,” Respiration Physiology, vol. 21, no. 1, pp. 19–36, 1974. View at Google Scholar · View at Scopus
  8. J. N. Maina and J. D. Woodward, “Three-dimensional serial section computer reconstruction of the arrangement of the structural components of the parabronchus of the Ostrich, Struthio camelus lung,” Anatomical Record, vol. 292, no. 11, pp. 1685–1698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Woodward and J. N. Maina, “Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction,” Journal of Microscopy, vol. 230, pp. 84–93, 2008. View at Publisher · View at Google Scholar
  10. A. Makanya, A. Anagnostopoulou, and V. Djonov, “Development and remodeling of the vertebrate blood-gas barrier,” BioMed Research International, vol. 2013, Article ID 101597, 15 pages, 2013. View at Publisher · View at Google Scholar
  11. J. N. Maina, “Structure, function and evolution of the gas exchangers: comparative perspectives,” Journal of Anatomy, vol. 201, no. 4, pp. 281–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Fedde, “Relationship of structure and function of the avian respiratory system to disease susceptibility,” Poultry Science, vol. 77, no. 8, pp. 1130–1138, 1998. View at Google Scholar · View at Scopus
  13. P. Scheid, “Estimation of effective parabronchial gas volume during intermittent ventilatory flow: theory and application in the duck,” Respiration Physiology, vol. 32, no. 1, pp. 1–14, 1978. View at Google Scholar · View at Scopus
  14. R. C. Lasewski, “Respiration function in birds,” in Avian Biology, D. S. Farner, J. R. King, and K. C. Parkes, Eds., pp. 287–343, Academic press, New York, NY, USA, 1972. View at Google Scholar
  15. A. N. Makanya, Y. El-Darawish, B. M. Kavoi, and V. Djonov, “Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens,” Microscopy Research and Technique, vol. 74, no. 2, pp. 159–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. N. Makanya and V. G. Djonov, “Parabronchial angioarchitecture in developing and adult chickens,” Journal of Applied Physiology, vol. 106, no. 6, pp. 1959–1969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Nasu, “Scanning electron microscopic study on the microarchitecture of the vascular system in the pigeon lung,” Journal of Veterinary Medical Science, vol. 67, pp. 1071–1074, 2005. View at Google Scholar
  18. E. R. Schachner, J. R. Hutchinson, and C. Farmer, “Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria,” PeerJ, vol. 1, article e60, 2013. View at Google Scholar
  19. P. Scheid, H. Slama, and J. Piiper, “Mechanisms of unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations,” Respiration Physiology, vol. 14, no. 1-2, pp. 83–95, 1972. View at Google Scholar · View at Scopus
  20. A. R. Akester, “The comparative anatomy of the respiratory pathways in the domestic fowl (Gallus domesticus), pigeon (Columbia livia) and domestic duck (Anas platyrhyncha),” Journal of anatomy, vol. 94, pp. 487–505, 1960. View at Google Scholar · View at Scopus
  21. H. R. Duncker, “The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus,” Ergebnisse der Anatomie und Entwicklungsgeschichte, vol. 45, no. 6, pp. 7–171, 1971. View at Google Scholar · View at Scopus
  22. J. Lopez, E. Gomez, and P. Sesma, “Anatomical study of the bronchial system and major blood vessels of the chicken lung (Gallus gallus) by means of a three-dimensional scale model,” Anatomical Record, vol. 234, no. 2, pp. 240–248, 1992. View at Google Scholar · View at Scopus
  23. D. O. Kuethe, “Fluid mechanical valving of air flow in bird lungs,” Journal of Experimental Biology, vol. 136, pp. 1–12, 1988. View at Google Scholar · View at Scopus
  24. R. Bulacio, M. H. Hazelhoff, and A. M. Torres, “Renal expression and function of oat1 and oat3 in rats with vascular calcification,” Pharmacology, vol. 90, pp. 66–77, 2012. View at Google Scholar
  25. E. J. Eliason, “Alligators, like birds, breathe one way only,” The Journal of Experimental Biology, vol. 213, no. 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. N. Makanya, R. Hlushchuk, and V. Djonov, “The pulmonary blood-gas barrier in the avian embryo: inauguration, development and refinement,” Respiratory Physiology & Neurobiology, vol. 178, pp. 30–38, 2011. View at Google Scholar
  27. F. L. Powell, M. R. Fedde, R. K. Gratz, and P. Scheid, “Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck,” Respiration Physiology, vol. 35, no. 3, pp. 349–359, 1978. View at Google Scholar · View at Scopus