Table of Contents
ISRN Virology
Volume 2014 (2014), Article ID 629641, 7 pages
http://dx.doi.org/10.1155/2014/629641
Research Article

Construction and Characterization of Recombinant HSV-1 Expressing Early Growth Response-1

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road,Princess Anne, MD 21853, USA

Received 31 October 2013; Accepted 23 December 2013; Published 12 February 2014

Academic Editors: H. E. Kaufman, A. Mastino, and C. Torti

Copyright © 2014 Gautam Bedadala et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Guffey, J. N. Parker, W. S. Luckett Jr. et al., “Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors,” Cancer Gene Therapy, vol. 14, no. 1, pp. 45–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Tanaka, H. Kagawa, Y. Yamanashi, T. Sata, and Y. Kawaguchi, “Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo,” Journal of Virology, vol. 77, no. 2, pp. 1382–1391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. C. Murphy, “Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli,” Journal of Bacteriology, vol. 180, no. 8, pp. 2063–2071, 1998. View at Google Scholar · View at Scopus
  4. J. M. Melancon, R. E. Luna, T. P. Foster, and K. G. Kousoulas, “Herpes simplex virus type 1 gK is required for gB-mediated virus-induced cell fusion, while neither gB and gK nor gB and UL20p function redundantly in virion de-envelopment,” Journal of Virology, vol. 79, no. 1, pp. 299–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. P. Foster, G. V. Rybachuk, and K. G. Kousoulas, “Expression of the enhanced green fluorescent protein by herpes simplex virus type 1 (HSV-1) as an in vitro or in vivo marker for virus entry and replication,” Journal of Virological Methods, vol. 75, no. 2, pp. 151–160, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. H. E. Kaufman, E. D. Varnell, and H. W. Thompson, “Cidofovir and experimental herpetic stromal disease,” Archives of Ophthalmology, vol. 117, no. 7, pp. 925–928, 1999. View at Google Scholar · View at Scopus
  7. G. R. Bedadala, R. C. Pinnoji, and S.-C. V. Hsia, “Early Growth Response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression,” Cell Research, vol. 17, no. 6, pp. 546–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Sato, S. Wang, L. Li et al., “A novel strategy for introducing exogenous Bcl-2 into neuronal cells: the Cre/loxP system-mediated activation of Bcl-2 for preventing programmed cell death using recombinant adenoviruses,” Molecular and Cellular Neurosciences, vol. 12, no. 1-2, pp. 65–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Watson, S. Mercier, C. Bye, J. Wilkinson, A. L. Cunningham, and A. N. Harman, “Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses,” Virology Journal, vol. 4, article 130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. R. Bedadala, J. R. Palem, L. Graham, J. M. Hill, H. E. McFerrin, and S.-C. Hsia, “Lytic HSV-1 infection induces the multifunctional transcription factor Early Growth Response-1 (EGR-1) in rabbit corneal cells,” Virology Journal, vol. 8, article 262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Hsia, L. G. Graham, G. R. Bedadala, M. B. Balish, F. Chen, and R. W. Figliozzi, “Induction of transcription factor early growth response protein 1 during HSV-1 infection promotes viral replication in corneal cells,” British Microbiology Research Journal, vol. 3, no. 4, pp. 706–723, 2013. View at Google Scholar