Table of Contents
Retracted

This article has been retracted, upon the authors’ request, as it is essentially identical in content with a previously published paper by the same authors titled “Bacteria and Obesity: The Proportion Makes the Difference,” published in Surgery: Current Research (2013) 3:152.

View the full Retraction here.

References

  1. K. Kotzampassi, E. J. Giamarellos-Bourboulis, and G. Stavrou, “Obesity as a consequence of gut bacteria and diet interactions,” ISRN Obesity, vol. 2014, Article ID 651895, 8 pages, 2014.
ISRN Obesity
Volume 2014, Article ID 651895, 8 pages
http://dx.doi.org/10.1155/2014/651895
Review Article

Obesity as a Consequence of Gut Bacteria and Diet Interactions

1Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
2Fourth Department of Internal Medicine, University of Athens Medical School, Athens 12462, Greece

Received 4 January 2014; Accepted 6 February 2014; Published 6 March 2014

Academic Editors: D. Micic and E. K. Naderali

Copyright © 2014 Katerina Kotzampassi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bengmark, “Gut microbiota, immune development and function,” Pharmacological Research, vol. 69, pp. 87–113, 2013. View at Google Scholar
  2. E. Maury and S. M. Brichard, “Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome,” Molecular and Cellular Endocrinology, vol. 314, no. 1, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Pataky, E. Bobbíoni-Harsch, A. Hadengue, A. Carpentier, and A. Golay, “Gut microbiota, responsible for our body weight?” Revue Medicale Suisse, vol. 5, no. 196, pp. 662–664, 2009. View at Google Scholar · View at Scopus
  4. F. Bäckhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718–15723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. E. Ley, F. Bäckhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon, “Obesity alters gut microbial ecology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 11070–11075, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature, vol. 444, no. 7122, pp. 1027–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to diet-induced obesity in germ-free mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 979–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. N. M. Delzenne and P. D. Cani, “Interaction between obesity and the gut microbiota: relevance in nutrition,” Annual Review of Nutrition, vol. 31, pp. 15–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial ecology: human gut microbes associated with obesity,” Nature, vol. 444, no. 7122, pp. 1022–1023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Tennyson and G. Friedman, “Microecology, obesity, and probiotics,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 15, no. 5, pp. 422–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Bäckhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon, “Host-bacterial mutualism in the human intestine,” Science, vol. 307, no. 5717, pp. 1915–1920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, and R. Knight, “Bacterial community variation in human body habitats across space and time,” Science, vol. 326, no. 5960, pp. 1694–1697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Reinhardt, C. S. Reigstad, and F. Bäckhed, “Intestinal microbiota during infancy and its implications for obesity,” Journal of Pediatric Gastroenterology and Nutrition, vol. 48, no. 3, pp. 249–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. G. Zoetendal, E. E. Vaughan, and W. M. De Vos, “A microbial world within us,” Molecular Microbiology, vol. 59, no. 6, pp. 1639–1650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. G. Zoetendal, M. Rajilić-Stojanović, and W. M. de Vos, “High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota,” Gut, vol. 57, no. 11, pp. 1605–1615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. E. Ley, R. Knight, and J. I. Gordon, “The human microbiome: eliminating the biomedical/environmental dichotomy in microbial ecology,” Environmental Microbiology, vol. 9, no. 1, pp. 3–4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Hugenholtz, B. M. Goebel, and N. R. Pace, “Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity,” Journal of Bacteriology, vol. 180, no. 18, pp. 4765–4774, 1998. View at Google Scholar · View at Scopus
  18. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Ley, M. Hamady, C. Lozupone et al., “Evolution of mammals and their gut microbes,” Science, vol. 320, no. 5883, pp. 1647–1651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Bercik, S. M. Collins, and E. F. Verdu, “Microbes and the gut-brain axis,” Neurogastroenterology and Motility, vol. 24, no. 5, pp. 405–413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al., “A core gut microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp. 480–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Waldram, E. Holmes, Y. Wang et al., “Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents,” Journal of Proteome Research, vol. 8, no. 5, pp. 2361–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. B. S. Samuel, E. E. Hansen, J. K. Manchester et al., “Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 25, pp. 10643–10648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Turnbaugh, F. Bäckhed, L. Fulton, and J. I. Gordon, “Diet induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome,” Cell Host and Microbe, vol. 3, no. 4, pp. 213–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. H. Duncan, A. Belenguer, G. Holtrop, A. M. Johnstone, H. J. Flint, and G. E. Lobley, “Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces,” Applied and Environmental Microbiology, vol. 73, no. 4, pp. 1073–1078, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Santacruz, A. Marcos, J. Wärnberg et al., “Interplay between weight loss and gut microbiota composition in overweight adolescents,” Obesity, vol. 17, no. 10, pp. 1906–1915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Nadal, A. Santacruz, A. Marcos et al., “Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents,” International Journal of Obesity, vol. 33, no. 7, pp. 758–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Zhang, J. K. DiBaise, A. Zuccolo et al., “Human gut microbiota in obesity and after gastric bypass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2365–2370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Furet, L. C. Kong, J. Tap et al., “Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers,” Diabetes, vol. 59, no. 12, pp. 3049–3057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. V. Li, H. Ashrafian, M. Bueter et al., “Metabolic surgery profoundly influences gut microbial—host metabolic cross-talk,” Gut, vol. 60, no. 9, pp. 1214–1223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. K. Ishida, J. Faintuch, A. M. R. Paula et al., “Microbial flora of the stomach after gastric bypass for morbid obesity,” Obesity Surgery, vol. 17, no. 6, pp. 752–758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kalliomäki, M. C. Collado, S. Salminen, and E. Isolauri, “Early differences in fecal microbiota composition in children may predict overweight,” The American Journal of Clinical Nutrition, vol. 87, no. 3, pp. 534–538, 2008. View at Google Scholar · View at Scopus
  33. R. J. Boesten, F. H. J. Schuren, and W. M. de Vos, “A bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria,” Journal of Microbiological Methods, vol. 76, no. 3, pp. 269–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Turroni, J. R. Marchesi, E. Foroni et al., “Microbiomic analysis of the bifidobacterial population in the human distal gut,” ISME Journal, vol. 3, no. 6, pp. 745–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Boesten and W. M. de Vos, “Interactomics in the human intestine: lactobacilli and bifidobacteria make a difference,” Journal of clinical gastroenterology, vol. 42, pp. S163–S167, 2008. View at Google Scholar · View at Scopus
  36. A. C. Lundell, I. Adlerberth, E. Lindberg et al., “Increased levels of circulating soluble CD14 but not CD83 in infants are associated with early intestinal colonization with Staphylococcus aureus,” Clinical and Experimental Allergy, vol. 37, no. 1, pp. 62–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Kaplan and W. A. Walker, “Early gut colonization and subsequent obesity risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 15, pp. 278–284, 2012. View at Google Scholar
  38. P. D. Cani, J. Amar, M. A. Iglesias et al., “Metabolic endotoxemia initiates obesity and insulin resistance,” Diabetes, vol. 56, no. 7, pp. 1761–1772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Tilg, “Obesity, metabolic syndrome and microbiota: multiple interactions,” Journal of Clinical Gastroenterology, vol. 44, no. 1, pp. S16–S18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Jumpertz, D. S. Le, P. J. Turnbaugh et al., “Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans,” The American Journal of Clinical Nutrition, vol. 94, no. 1, pp. 58–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. K. Fleissner, N. Huebel, M. M. Abd El-Bary, G. Loh, S. Klaus, and M. Blaut, “Absence of intestinal microbiota does not protect mice from diet-induced obesity,” British Journal of Nutrition, vol. 104, no. 6, pp. 919–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Hildebrandt, C. Hoffmann, S. A. Sherrill-Mix et al., “High fat diet determines the composition of the murine gut microbiome independently of obesity,” Gastroenterology, vol. 137, no. 5, pp. 1716–e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. L. Beyer and M. A. Flynn, “Effects of high- and low-fiber diets on human feces,” Journal of the American Dietetic Association, vol. 72, no. 3, pp. 271–277, 1978. View at Google Scholar · View at Scopus
  44. E. Wisker, A. Maltz, and W. Feldheim, “Metabolizable energy of diets low or high in dietary fiber from cereals when eaten by humans,” Journal of Nutrition, vol. 118, no. 8, pp. 945–952, 1988. View at Google Scholar · View at Scopus
  45. J. Cliff Yoon, T. W. Chickering, E. D. Rosen et al., “Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation,” Molecular and Cellular Biology, vol. 20, no. 14, pp. 5343–5349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Pyleris, E. J. Giamarellos-Bourboulis, D. Tzivras, V. Koussoulas, C. Barbatzas, and M. Pimentel, “The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome,” Digestive Diseases and Sciences, vol. 57, pp. 1321–1329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. H. J. Flint, E. A. Bayer, M. T. Rincon, R. Lamed, and B. A. White, “Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis,” Nature Reviews Microbiology, vol. 6, no. 2, pp. 121–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. C. Mountzouris, K. Kotzampassi, P. Tsirtsikos, K. Kapoutzis, and K. Fegeros, “Effects of Lactobacillus acidophilus on gut microflora metabolic biomarkers in fed and fasted rats,” Clinical Nutrition, vol. 28, no. 3, pp. 318–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Scarpellini, M. Campanale, D. Leone et al., “Gut microbiota and obesity,” Internal and Emergency Medicine, vol. 5, no. 1, pp. 53–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Scheppach, “Effects of short chain fatty acids on gut morphology and function,” Gut, vol. 35, no. 1, pp. S35–S38, 1994. View at Google Scholar · View at Scopus
  51. T. M. S. Wolever, P. Spadafora, and H. Eshuis, “Interaction between colonic acetate and propionate in humans,” The American Journal of Clinical Nutrition, vol. 53, no. 3, pp. 681–687, 1991. View at Google Scholar · View at Scopus
  52. M. Vernay, “Origin and utilization of volatile fatty acids and lactate in the rabbit: influence of the faecal excretion pattern,” British Journal of Nutrition, vol. 57, no. 3, pp. 371–381, 1987. View at Google Scholar · View at Scopus
  53. A. Schwiertz, D. Taras, K. Schäfer et al., “Microbiota and SCFA in lean and overweight healthy subjects,” Obesity, vol. 18, no. 1, pp. 190–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. J. Brown, S. M. Goldsworthy, A. A. Barnes et al., “The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11312–11319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. E. le Poul, C. Loison, S. Struyf et al., “Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 25481–25489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Diamant, E. E. Blaak, and W. M. de Vos, “Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?” Obesity Reviews, vol. 12, no. 4, pp. 272–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. D. Cani and N. M. Delzenne, “Gut microflora as a target for energy and metabolic homeostasis,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 6, pp. 729–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. P. D. Cani, S. Hoste, Y. Guiot, and N. M. Delzenne, “Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats,” British Journal of Nutrition, vol. 98, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. P. D. Cani, R. Bibiloni, C. Knauf et al., “Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice,” Diabetes, vol. 57, no. 6, pp. 1470–1481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. P. D. Cani, S. Possemiers, T. van de Wiele et al., “Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability,” Gut, vol. 58, no. 8, pp. 1091–1103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 3015–3025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Jia, H. Li, L. Zhao, and J. K. Nicholson, “Gut microbiota: a potential new territory for drug targeting,” Nature Reviews Drug Discovery, vol. 7, no. 2, pp. 123–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. F. A. Hoffman, “Development of probiotics as biologic drugs,” Clinical Infectious Diseases, vol. 46, no. 2, pp. S125–S127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Membrez, F. Blancher, M. Jaquet et al., “Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice,” The FASEB Journal, vol. 22, no. 7, pp. 2416–2426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. T. S. Stappenbeck, L. V. Hooper, and J. I. Gordon, “Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15451–15455, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Y. Huang, V. A. Leone, S. Devkota, Y. Wang, M. J. Brady, and E. B. Chang, “Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue,” Journal of Parenteral and Enteral Nutrition, vol. 37, no. 6, pp. 746–754, 2013. View at Publisher · View at Google Scholar
  68. P. D. Cani, A. M. Neyrinck, F. Fava et al., “Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia,” Diabetologia, vol. 50, no. 11, pp. 2374–2383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Kotzampassi and E. J. Giamarellos-Bourboulis, “Probiotics for infectious diseases: more drugs, less dietary supplementation,” International Journal of Antimicrobial Agents, vol. 40, pp. 288–296, 2012. View at Google Scholar
  70. G. R. Gibson, H. M. Probert, J. van Loo, R. A. Rastall, and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: updating the concept of prebiotics,” Nutrition Research Reviews, vol. 17, no. 2, pp. 259–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Kondo, J. Z. Xiao, T. Satoh et al., “Antiobesity effects of bifidobacterium breve Strain B-3 supplementation in a mouse model with high-fat diet-Induced obesity,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 8, pp. 1656–1661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. H. M. An, S. Y. Park, D. K. Lee et al., “Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats,” Lipids in Health and Disease, vol. 10, article 116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Aronsson, Y. Huang, P. Parini et al., “Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4),” PLoS ONE, vol. 5, no. 9, Article ID e13087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. H. Kang, S. I. Yun, and H. O. Park, “Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats,” Journal of Microbiology, vol. 48, no. 5, pp. 712–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Arora, S. Singh, and R. K. Sharma, “Probiotics: interaction with gut microbiome and antiobesity potential,” Nutrition, vol. 29, pp. 591–596, 2013. View at Google Scholar
  76. V. Robles Alonso and F. Guarner, “Linking the gut microbiota to human health,” British Journal of Nutrition, vol. 109, pp. S21–S26, 2013. View at Google Scholar
  77. N. M. Delzenne and P. D. Cani, “Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: potential interest of prebiotics,” International Dairy Journal, vol. 20, no. 4, pp. 277–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Luoto, K. Laitinen, M. Nermes, and E. Isolauri, “Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study,” British Journal of Nutrition, vol. 103, no. 12, pp. 1792–1799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. P. Jung, K. M. Lee, J. H. Kang et al., “Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial,” Korean Journal Of Family Medicine, vol. 34, pp. 80–89, 2013. View at Google Scholar
  80. Y. Kadooka, M. Sato, K. Imaizumi et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 636–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Bouhnik, L. Raskine, G. Simoneau et al., “The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study,” The American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1658–1664, 2004. View at Google Scholar · View at Scopus
  82. S. Kolida, D. Meyer, and G. R. Gibson, “A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans,” European Journal of Clinical Nutrition, vol. 61, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Macfarlane, G. T. Macfarlane, and J. H. Cummings, “Review article: prebiotics in the gastrointestinal tract,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 5, pp. 701–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. M. Neyrinck, S. Possemiers, C. Druart et al., “Prebiotic effects of wheat Arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in diet-induced obese mice,” PLoS ONE, vol. 6, no. 6, Article ID e20944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. J. A. Parnell and R. A. Reimer, “Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults,” The American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1751–1759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Vitali, M. Ndagijimana, F. Cruciani et al., “Impact of a synbiotic food on the gut microbial ecology and metabolic profiles,” BMC Microbiology, vol. 10, article 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. I. M. Koutelidakis, E. Bezirtzoglou, E. J. Giamarellos-Bourboulis, V. Grosomanidis, and K. Kotzampassi, “Impact of synbiotics on the intestinal flora of critically ill patients with multiple injuries,” International Journal of Antimicrobial Agents, vol. 36, no. 1, pp. 90–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. R. M. A. J. Ruijschop, A. E. M. Boelrijk, and M. C. te Giffel, “Satiety effects of a dairy beverage fermented with propionic acid bacteria,” International Dairy Journal, vol. 18, no. 9, pp. 945–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. P. D. Cani, E. Lecourt, E. M. Dewulf et al., “Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal,” The American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1236–1243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Landy, H. O. Al-Hassi, S. D. McLaughlin et al., “Review article: faecal transplantation therapy for gastrointestinal disease,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 4, pp. 409–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. T. J. Borody and J. Campbell, “Fecal microbiota transplantation: techniques, applications, and issues,” Gastroenterology Clinics of North America, vol. 41, pp. 781–803, 2012. View at Google Scholar