Table of Contents
ISRN Developmental Biology
Volume 2014, Article ID 713631, 15 pages
http://dx.doi.org/10.1155/2014/713631
Review Article

Cytoskeleton and Adhesion in Myogenesis

Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil

Received 27 January 2014; Accepted 2 March 2014; Published 15 April 2014

Academic Editors: M. Behra, A. Grimaldi, and J. R. Jessen

Copyright © 2014 Manoel Luís Costa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Sabourin and M. A. Rudnicki, “The molecular regulation of myogenesis,” Clinical Genetics, vol. 57, no. 1, pp. 16–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Crawford and R. Horowits, “Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle,” Biophysical Reviews, vol. 3, pp. 25–32, 2011. View at Publisher · View at Google Scholar
  3. J. W. Sanger, J. Wang, Y. Fan, J. White, and J. M. Sanger, “Assembly and dynamics of myofibrils,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 858606, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Zheng, M. Han, M. Bernier, and J.-K. Wen, “Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression,” FEBS Journal, vol. 276, no. 10, pp. 2669–2685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. Lewis, G. Tian, I. E. Vainberg, and N. J. Cowan, “Chaperonin-mediated folding of actin and tubulin,” Journal of Cell Biology, vol. 132, no. 1-2, pp. 1–4, 1996. View at Google Scholar · View at Scopus
  6. J. W. Shaevitz and Z. Gitai, “The structure and function of bacterial actin homologs,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 9, Article ID a000364, 2010. View at Google Scholar · View at Scopus
  7. C. G. dos Remedios, D. Chhabra, M. Kekic et al., “Actin binding proteins: regulation of cytoskeletal microfilaments,” Physiological Reviews, vol. 83, no. 2, pp. 433–473, 2003. View at Google Scholar · View at Scopus
  8. N. McKenna, J. B. Meigs, and Y.-L. Wang, “Identical distribution of fluorescently labeled brain and muscle actins in living cardiac fibroblasts and myocytes,” Journal of Cell Biology, vol. 100, no. 1, pp. 292–296, 1985. View at Google Scholar · View at Scopus
  9. V. Brault, M. C. Reedy, U. Sauder, R. A. Kammerer, U. Aebi, and C.-A. Schoenenberger, “Substitution of flight muscle-specific actin by human β-cytoplasmic actin in the indirect flight muscle of Drosophila,” Journal of Cell Science, vol. 112, part 21, pp. 3627–3639, 1999. View at Google Scholar · View at Scopus
  10. P. Gunning, R. Weinberger, and P. Jeffrey, “Actin and tropomyosin isoforms in morphogenesis,” Anatomy and Embryology, vol. 195, no. 4, pp. 311–315, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-L. Wang, “Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling,” Journal of Cell Biology, vol. 101, no. 2, pp. 597–602, 1985. View at Google Scholar · View at Scopus
  12. K. A. Clark, A. S. McElhinny, M. C. Beckerle, and C. C. Gregorio, “Striated muscle cytoarchitecture: an intricate web of form and function,” Annual Review of Cell and Developmental Biology, vol. 18, pp. 637–706, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ono, “Dynamic regulation of sarcomeric actin filaments in striated muscle,” Cytoskeleton, vol. 67, no. 11, pp. 677–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. W. Gunning, G. Schevzov, A. J. Kee, and E. C. Hardeman, “Tropomyosin isoforms: divining rods for actin cytoskeleton function,” Trends in Cell Biology, vol. 15, no. 6, pp. 333–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Krendel and M. S. Mooseker, “Myosins: tails (and heads) of functional diversity,” Physiology, vol. 20, pp. 239–251, 2005. View at Google Scholar · View at Scopus
  16. R. E. Cheney, M. K. O'Shea, J. E. Heuser et al., “Brain myosin-V is a two-headed unconventional myosin with motor activity,” Cell, vol. 75, no. 1, pp. 13–23, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. H. W. Lin, M. E. Schneider, and B. Kachar, “When size matters: the dynamic regulation of stereocilia lengths,” Current Opinion in Cell Biology, vol. 17, no. 1, pp. 55–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Tskhovrebova and J. Trinick, “Making muscle elastic: the structural basis of myomesin stretching,” PLoS Biology, vol. 10, no. 2, Article ID e1001264, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kontrogianni-Konstantopoulos, M. A. Ackermann, A. L. Bowman, S. V. Yap, and R. J. Bloch, “Muscle giants: molecular scaffolds in sarcomerogenesis,” Physiological Reviews, vol. 89, no. 4, pp. 1217–1267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Pisaniello, C. Serra, D. Rossi et al., “The block of ryanodine receptors selectively inhibits fetal myoblast differentiation,” Journal of Cell Science, vol. 116, pp. 1589–1597, 2003. View at Google Scholar
  21. J. W. Sanger, J. Wang, B. Holloway, A. Du, and J. M. Sanger, “Myofibrillogenesis in skeletal muscle cells in zebrafish,” Cell Motility and the Cytoskeleton, vol. 66, no. 8, pp. 556–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Ehler, B. M. Rothen, S. P. Hämmerle, M. Komiyama, and J.-C. Perriard, “Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments,” Journal of Cell Science, vol. 112, no. 10, pp. 1529–1539, 1999. View at Google Scholar · View at Scopus
  23. A. Du, J. M. Sanger, and J. W. Sanger, “Cardiac myofibrillogenesis inside intact embryonic hearts,” Developmental Biology, vol. 318, no. 2, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Liu, W. Qin, Y. Shao et al., “Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy,” Journal of Biomedical Optics, vol. 16, no. 12, Article ID 126012, 2011. View at Google Scholar · View at Scopus
  25. D. Tondeleir, D. Vandamme, J. Vandekerckhove, C. Ampe, and A. Lambrechts, “Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models,” Cell Motility and the Cytoskeleton, vol. 66, no. 10, pp. 798–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Myhre and D. B. Pilgrim, “At the start of the sarcomere: a previously unrecognized role for myosin chaperones and associated proteins during early myofibrillogenesis,” Biochemistry Research International, vol. 2012, Article ID 712315, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kontrogianni-Konstantopoulos, D. H. Catino, J. C. Strong, and R. J. Bloch, “De novo myofibrillogenesis in C2C12 cells: evidence for the independent assembly of M bands and Z disks,” The American Journal of Physiology—Cell Physiology, vol. 290, no. 2, pp. C626–C637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Ishikawa, R. Bischoff, and H. Holtzer, “Mitosis and intermediate-sized filaments in developing skeletal muscle,” Journal of Cell Biology, vol. 38, no. 3, pp. 538–555, 1968. View at Google Scholar · View at Scopus
  29. M. L. Costa, R. Escaleira, A. Cataldo, F. Oliveira, and C. S. Mermelstein, “Desmin: molecular interactions and putative functions of the muscle intermediate filament protein,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 12, pp. 1819–1830, 2004. View at Google Scholar · View at Scopus
  30. E. Lazarides and B. D. Hubbard, “Immunological characterization of the subunit of the 100 Å filaments from muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 12, pp. 4344–4348, 1976. View at Google Scholar · View at Scopus
  31. J. V. Small and A. Sobieszek, “Studies on the function and composition of the 10 NM (100 Å) filaments of vertebrate smooth muscle,” Journal of Cell Science, vol. 23, pp. 243–268, 1977. View at Google Scholar · View at Scopus
  32. C. D. S. Mermelstein, M. L. Costa, and V. M. Neto, “The cytoskeleton of the electric tissue of Electrophorus electricus, L,” Anais da Academia Brasileira de Ciencias, vol. 72, no. 3, pp. 341–351, 2000. View at Google Scholar · View at Scopus
  33. Z. Li, M. Mericskay, O. Agbulut et al., “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” Journal of Cell Biology, vol. 139, no. 1, pp. 129–144, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. C. S. Clemen, H. Herrmann, S. V. Strelkov, and R. Schröder, “Desminopathies: pathology and mechanisms,” Acta Neuropathologica, vol. 125, pp. 47–75, 2013. View at Publisher · View at Google Scholar
  35. D. Čížková, T. Soukup, and J. Mokrý, “Nestin expression reflects formation, revascularization and reinnervation of new myofibers in regenerating rat hind limb skeletal muscles,” Cells Tissues Organs, vol. 189, no. 5, pp. 338–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Michalczyk and M. Ziman, “Nestin structure and predicted function in cellular cytoskeletal organisation,” Histology and Histopathology, vol. 20, no. 2, pp. 665–671, 2005. View at Google Scholar · View at Scopus
  37. P. Mohseni, H.-K. Sung, A. J. Murphy et al., “Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions,” Journal of Neuroscience, vol. 31, no. 32, pp. 11547–11552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Philpott, E. B. Porro, M. W. Kirschner, and L.-H. Tsai, “The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning,” Genes and Development, vol. 11, no. 11, pp. 1409–1421, 1997. View at Google Scholar · View at Scopus
  39. E. Contreras-Vallejos, E. Utreras, and C. Gonzalez-Billault, “Going out of the brain: non-nervous system physiological and pathological functions of Cdk5,” Cellular Signalling, vol. 24, no. 1, pp. 44–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Salmon and Z. E. Zehner, “The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis,” Differentiation, vol. 77, no. 5, pp. 492–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Galou, E. Colucci-Guyon, D. Ensergueix et al., “Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice,” Journal of Cell Biology, vol. 133, no. 4, pp. 853–863, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Gonzales, B. Weksler, D. Tsuruta et al., “Structure and function of a vimentin-associated matrix adhesion in endothelial cells,” Molecular Biology of the Cell, vol. 12, no. 1, pp. 85–100, 2001. View at Google Scholar · View at Scopus
  43. S. E. Newey, E. V. Howman, C. P. Ponting et al., “Syncoilin, a novel member of the intermediate filament superfamily that interacts with α-dystrobrevin in skeletal muscle,” Journal of Biological Chemistry, vol. 276, no. 9, pp. 6645–6655, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Poon, E. V. Howman, S. E. Newey, and K. E. Davies, “Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex,” Journal of Biological Chemistry, vol. 277, no. 5, pp. 3433–3439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. C. Brown, S. Torelli, I. Ugo et al., “Syncoilin upregulation in muscle of patients with neuromuscular disease,” Muscle and Nerve, vol. 32, no. 6, pp. 715–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Zhang, M.-L. Bang, D. S. Gokhin et al., “Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture,” The American Journal of Physiology—Cell Physiology, vol. 294, no. 5, pp. C1175–C1182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. D. J. Blake and E. Martin-Rendon, “Intermediate filaments and the function of the dystrophin-protein complex,” Trends in Cardiovascular Medicine, vol. 12, no. 5, pp. 224–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Moorwood, “Syncoilin, an intermediate filament-like protein linked to the dystrophin associated protein complex in skeletal muscle,” Cellular and Molecular Life Sciences, vol. 65, no. 19, pp. 2957–2963, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Ursitti, P. C. Lee, W. G. Resneck et al., “Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle: interaction with the dystrophin glycoprotein complex,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41830–41838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. R. Stone, A. O'Neill, R. M. Lovering et al., “Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization,” Journal of Cell Science, vol. 120, no. 22, pp. 3999–4008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. M. Lovering, A. O'Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” The American Journal of Physiology—Cell Physiology, vol. 300, no. 4, pp. C803–C813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Dubinska-Magiera, M. Zaremba-Czogalla, and R. Rzepecki, “Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease,” Cellular and Molecular Life Sciences, vol. 70, pp. 2713–2741, 2013. View at Google Scholar
  53. E. Mattioli, M. Columbaro, C. Capanni et al., “Prelamin A-mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning in human muscle,” Cell Death and Differentiation, vol. 18, no. 8, pp. 1305–1315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. D. Speese, J. Ashley, V. Jokhi et al., “Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling,” Cell, vol. 149, pp. 832–846, 2012. View at Publisher · View at Google Scholar
  55. I. A. Martínez-Vieyra, A. Vásquez-Limeta, R. González-Ramírez et al., “A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts,” Biochimica et Biophysica Acta, vol. 1833, pp. 698–711, 2013. View at Google Scholar
  56. D. Guérette, P. A. Khan, P. E. Savard, and M. Vincent, “Molecular evolution of type VI intermediate filament proteins,” BMC Evolutionary Biology, vol. 7, article 164, 2007. View at Publisher · View at Google Scholar
  57. B. L. Granger and E. Lazarides, “Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle,” Cell, vol. 22, no. 3, pp. 727–738, 1980. View at Google Scholar · View at Scopus
  58. Y. Pan, R. Jing, A. Pitre, B. J. Williams, and O. Skalli, “Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton,” The FASEB Journal, vol. 22, no. 9, pp. 3196–3206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. M. Lund, J. P. Kerr, J. Lupinetti et al., “Synemin isoforms differentially organize cell junctions and desmin filaments in neonatal cardiomyocytes,” The FASEB Journal, vol. 26, no. 1, pp. 137–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Breckler and E. Lazarides, “Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle,” Journal of Cell Biology, vol. 92, no. 3, pp. 795–806, 1982. View at Google Scholar · View at Scopus
  61. Y. Mizuno, T. G. Thompson, J. R. Guyon et al., “Desmuslin, an intermediate filament protein that interacts with α-dystrobrevin and desmin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6156–6161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. P. B. Antin, S. Forry-Schaudies, T. M. Friedman, S. J. Tapscott, and H. Holtzer, “Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments,” Journal of Cell Biology, vol. 90, no. 2, pp. 300–308, 1981. View at Google Scholar · View at Scopus
  63. T. Zhang, K. J. M. Zaal, J. Sheridan, A. Mehta, G. G. Gundersen, and E. Ralston, “Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion,” Journal of Cell Science, vol. 122, no. 9, pp. 1401–1409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Mian, W. S. Pierre-Louis, N. Dole, R. M. Gilberti, K. Dodge-Kafka, and J. S. Tirnauer, “LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation,” PLoS ONE, vol. 7, no. 2, Article ID e31583, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Metzger, V. Gache, M. Xu et al., “MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function,” Nature, vol. 484, no. 7392, pp. 120–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Pizon, F. Gerbal, C. C. Diaz, and E. Karsenti, “Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation,” The EMBO Journal, vol. 24, no. 21, pp. 3781–3792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. D. C. H. Ng, B. L. Gebski, M. D. Grounds, and M. A. Bogoyevitch, “Myoseverin disrupts sarcomeric organization in myocytes: an effect independent of microtubule assembly inhibition,” Cell Motility and the Cytoskeleton, vol. 65, no. 1, pp. 40–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. J. Khairallah, G. Shi, F. Sbrana et al., “Microtubules underlie dysfunction in duchenne muscular dystrophy,” Science Signaling, vol. 5, p. ra56, 2012. View at Google Scholar
  69. U. Kaufmann, J. Kirsch, A. Irintchev, A. Wernig, and A. Starzinski-Powitz, “The M-cadherin catenin complex interacts with microtubules in skeletal muscle cells: implications for the fusion of myoblasts,” Journal of Cell Science, vol. 112, part 1, pp. 55–67, 1999. View at Google Scholar · View at Scopus
  70. B. A. Azakir, S. D. Fulvio, C. Therrien, and M. Sinnreich, “Dysferlin interacts with tubulin and microtubules in mouse skeletal muscle,” PLoS ONE, vol. 5, no. 4, Article ID e10122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. G. Boyer, M. A. Bernstein, and C. Boudreau-Larivière, “Plakins in striated muscle,” Muscle and Nerve, vol. 41, no. 3, pp. 299–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Uitto, L. Pulkkinen, F. J. D. Smith, and W. H. I. McLean, “Plectin and human genetic disorders of the skin and muscle. The paradigm of epidermolysis bullosa with muscular dystrophy,” Experimental Dermatology, vol. 5, no. 5, pp. 237–246, 1996. View at Google Scholar · View at Scopus
  73. P. Konieczny, P. Fuchs, S. Reipert et al., “Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms,” Journal of Cell Biology, vol. 181, no. 4, pp. 667–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. K. G. Young and R. Kothary, “Dystonin/Bpag1—a link to what?” Cell Motility and the Cytoskeleton, vol. 64, no. 12, pp. 897–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Subramanian, A. Prokop, M. Yamamoto et al., “Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction,” Current Biology, vol. 13, no. 13, pp. 1086–1095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. A. S. McElhinny, C. N. Perry, C. C. Witt, S. Labeit, and C. C. Gregorio, “Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development,” Journal of Cell Science, vol. 117, no. 15, pp. 3175–3188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. B. A. Bryan, D. Li, X. Wu, and M. Liu, “The Rho family of small GTPases: crucial regulators of skeletal myogenesis,” Cellular and Molecular Life Sciences, vol. 62, no. 14, pp. 1547–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Cortés, D. Daggett, R. J. Bryson-Richardson et al., “Cadherin-mediated differential cell adhesion controls slow muscle cell migration in the developing zebrafish myotome,” Developmental Cell, vol. 5, no. 6, pp. 865–876, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Zeschnigk, D. Kozian, C. Kuch, M. Schmoll, and A. Starzinski-Powitz, “Involvement of M-cadherin in terminal differentiation of skeletal muscle cells,” Journal of Cell Science, vol. 108, part 9, pp. 2973–2981, 1995. View at Google Scholar · View at Scopus
  80. A. Hollnagel, C. Grund, W. W. Franke, and H.-H. Arnold, “The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4760–4770, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Charrasse, F. Comunale, M. Fortier, E. Portales-Casamar, A. Debant, and C. Gauthier-Rouvière, “M-cadherin activates Rac1 GTPase through the Rho-GEF Trio during myoblast fusion,” Molecular Biology of the Cell, vol. 18, no. 5, pp. 1734–1743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. D. D. Armstrong, V. L. Wong, and K. A. Esser, “Expression of β-catenin is necessary for physiological growth of adult skeletal muscle,” The American Journal of Physiology—Cell Physiology, vol. 291, no. 1, pp. C185–C188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. K. A. McDonald, A. F. Horwitz, and K. A. Knudsen, “Adhesion molecules and skeletal myogenesis,” Seminars in Developmental Biology, vol. 6, no. 2, pp. 105–116, 1995. View at Google Scholar · View at Scopus
  84. J. A. Carson and L. Wei, “Integrin signaling's potential for mediating gene expression in hypertrophying skeletal muscle,” Journal of Applied Physiology, vol. 88, no. 1, pp. 337–343, 2000. View at Google Scholar · View at Scopus
  85. F. J. Conti, A. Felder, S. Monkley et al., “Progressive myopathy and defects in the maintenance of myotendinous junctions in mice that lack talin 1 in skeletal muscle,” Development, vol. 135, no. 11, pp. 2043–2053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Senetar, C. L. Moncman, and R. O. McCann, “Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle,” Cell Motility and the Cytoskeleton, vol. 64, no. 3, pp. 157–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. J. Dowling, A. P. Vreede, S. Kim, J. Golden, and E. L. Feldman, “Kindlin-2 is required for myocyte elongation and is essential for myogenesis,” BMC Cell Biology, vol. 9, article 36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. B. D. Crawford, C. A. Henry, T. A. Clason, A. L. Becker, and M. B. Hille, “Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis,” Molecular Biology of the Cell, vol. 14, no. 8, pp. 3065–3081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. A. C. Durieux, D. Desplanches, O. Freyssenet, and M. Flück, “Mechanotransduction in striated muscle via focal adhesion kinase,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1312–1313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Muntoni, S. Torelli, and A. Ferlini, “Dystrophin and mutations: one gene, several proteins, multiple phenotypes,” The Lancet Neurology, vol. 2, no. 12, pp. 731–740, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Deconinck and B. Dan, “Pathophysiology of duchenne muscular dystrophy: current hypotheses,” Pediatric Neurology, vol. 36, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Tabebordbar, E. T. Wang, and A. J. Wagers, “Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair,” Annual Review of Pathology, vol. 8, pp. 441–475, 2013. View at Google Scholar
  93. C. Jacobson, P. D. Côté, S. G. Rossi, R. L. Rotundo, and S. Carbonetto, “The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane,” Journal of Cell Biology, vol. 153, no. 3, pp. 435–450, 2001. View at Google Scholar · View at Scopus
  94. N. L. Quach and T. A. Rando, “Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells,” Developmental Biology, vol. 293, no. 1, pp. 38–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Rich and J. W. Lichtman, “Motor nerve terminal loss from degenerating muscle fibers,” Neuron, vol. 3, no. 6, pp. 677–688, 1989. View at Google Scholar · View at Scopus
  96. J. A. Connolly, “Role of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells,” Journal of Cell Biology, vol. 99, no. 1, pp. 148–154, 1984. View at Google Scholar · View at Scopus
  97. M. Gautam, T. M. DeChiara, D. J. Glass, G. D. Yancopoulos, and J. R. Sanes, “Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn,” Developmental Brain Research, vol. 114, no. 2, pp. 171–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. J. E. Sugiyama, D. J. Glass, G. D. Yancopoulos, and Z. W. Hall, “Laminin-induced acetylcholine receptor clustering: an alternative pathway,” Journal of Cell Biology, vol. 139, no. 1, pp. 181–191, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. Henriquez, A. Webb, M. Bence et al., “Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 48, pp. 18812–18817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. A. E. Hochreiter-Hufford, C. S. Lee, J. M. Kinchen et al., “Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion,” Nature, vol. 497, pp. 263–267, 2013. View at Google Scholar
  101. S. M. van den Eijnde, M. J. B. van den Hoff, C. P. M. Reutelingsperger et al., “Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation,” Journal of Cell Science, vol. 114, no. 20, pp. 3631–3642, 2001. View at Google Scholar · View at Scopus
  102. C. H. Lowrey and A. F. Horwitz, “Effect of inhibitors of cholesterol synthesis on muscle differentiation,” Biochimica et Biophysica Acta, vol. 712, no. 2, pp. 430–432, 1982. View at Google Scholar · View at Scopus
  103. C. S. Mermelstein, D. M. Portilho, F. A. Mendes, M. L. Costa, and J. G. Abreu, “Wnt/β-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion,” Differentiation, vol. 75, no. 3, pp. 184–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. P. P. Purslow, “The structure and functional significance of variations in the connective tissue within muscle,” Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology, vol. 133, no. 4, pp. 947–966, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Colognato, D. A. Winkelmann, and P. D. Yurchenco, “Laminin polymerization induces a receptor-cytoskeleton network,” Journal of Cell Biology, vol. 145, no. 3, pp. 619–631, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. J.-S. Kang, M.-J. Yi, W. Zhang, J. L. Feinleib, F. Cole, and R. S. Krauss, “Netrins and neogenin promote myotube formation,” Journal of Cell Biology, vol. 167, no. 3, pp. 493–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. G.-U. Bae, Y.-J. Yang, G. Jiang et al., “Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro,” Molecular Biology of the Cell, vol. 20, no. 23, pp. 4920–4931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Vaz, G. G. Martins, S. Thorsteinsdóttir, and G. Rodrigues, “Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model,” Cell and Tissue Research, vol. 348, pp. 569–578, 2012. View at Google Scholar
  109. V. Allamand, L. Briñas, P. Richard, T. Stojkovic, S. Quijano-Roy, and G. Bonne, “ColVI myopathies: where do we stand, where do we go?” Skeletal Muscle, vol. 1, article 30, 2011. View at Google Scholar
  110. A. Pagnon-Minot, M. Malbouyres, Z. Haftek-Terreau et al., “Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development,” Developmental Biology, vol. 316, no. 1, pp. 21–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Latvanlehto, M. A. Fox, R. Sormunen et al., “Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction,” Journal of Neuroscience, vol. 30, no. 37, pp. 12230–12241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Brandan and J. Gutierrez, “Role of skeletal muscle proteoglycans during myogenesis,” Matrix Biology, vol. 32, no. 6, pp. 289–297, 2013. View at Publisher · View at Google Scholar
  113. E. Carmeli, M. Moas, A. Z. Reznick, and R. Coleman, “Matrix metalloproteinases and skeletal muscle: a brief review,” Muscle and Nerve, vol. 29, no. 2, pp. 191–197, 2004. View at Publisher · View at Google Scholar · View at Scopus