Table of Contents
ISRN Immunology
Volume 2014, Article ID 718393, 5 pages
http://dx.doi.org/10.1155/2014/718393
Research Article

Comparative Analysis of the Informative Value of Radioimmunoassay and Laser Correlation Spectroscopy in Myasthenia Gravis

1Institute of General Pathology and Pathophysiology RAMS, Baltiyskaya Street, No. 8, Moscow 125315, Russia
2Moscow City Health Department, Moscow Myasthenia Center, SFHI Municipal Clinical Hospital No. 51, Alyabieva, No. 7/33, Moscow 121309, Russia

Received 19 January 2014; Accepted 19 February 2014; Published 12 March 2014

Academic Editors: M. Bakhiet and A. A. Manfredi

Copyright © 2014 Irina Alchinova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Vincent, “Autoimmune disorders of the neuromuscular junction,” Neurology India, vol. 56, no. 3, pp. 305–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Vincent, D. Beeson, and B. Lang, “Molecular targets for autoimmune and genetic disorders of neuromuscular transmission,” European Journal of Biochemistry, vol. 267, no. 23, pp. 6717–6728, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Romi, N. E. Gilhus, and J. A. Aarli, “Myasthenia gravis: clinical, immunological, and therapeutic advances,” Acta Neurologica Scandinavica, vol. 111, no. 2, pp. 134–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Lindstrom, “Acetylcholine receptors and myasthenia,” Muscle & Nerve, vol. 23, no. 4, pp. 453–477, 2000. View at Google Scholar
  5. F. Baggi, C. Antozzi, C. Toscani, and C. Cordiglieri, “Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades?” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, no. 1, pp. 19–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Tarrab-Hazdai, A. Aharonov, O. Abramsky, I. Silman, and S. Fuchs, “Proceedings: animal model for myasthenia gravis: acetylcholine receptor-induced myasthenia in rabbits, guinea pigs and monkeys,” Israel Journal of Medical Sciences, vol. 11, no. 12, p. 1390, 1975. View at Google Scholar · View at Scopus
  7. A. G. Engel, M. Tsujihata, J. M. Lindstrom, and V. A. Lennon, “The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study,” Annals of the New York Academy of Sciences, vol. 274, pp. 60–79, 1976. View at Google Scholar · View at Scopus
  8. C. Krarup, “Evoked responses in normal and diseased muscle with particular reference to twitch potentiation,” Acta Neurologica Scandinavica, vol. 68, no. 5, pp. 269–315, 1983. View at Google Scholar · View at Scopus
  9. A. Evoli, A. P. Batocchi, and P. Tonali, “A practical guide to the recognition and management of myasthenia gravis,” Drugs, vol. 52, no. 5, pp. 662–670, 1996. View at Google Scholar · View at Scopus
  10. D. V. Sidnev, M. Y. Karganov, N. I. Shcherbakova, I. B. Alchinova, and A. G. Sanadze, “Antibodies to acetylcholine receptors in patients with different clinical forms of myasthenia and Lambert-Eaton myasthenic syndrome,” Neuroscience and Behavioral Physiology, vol. 37, no. 2, pp. 129–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Karganov, I. Alchinova, E. Arkhipova, and A. V. Skalny, “Laser correlation spectroscopy: nutritional, ecological and toxic aspects,” in Biophysics, A. N. Misra, Ed., pp. 1–16, InTech, Rijeka, Croatia, 2012. View at Google Scholar
  12. L. A. Piruzyan, I. E. Kovalev, V. L. Kovaleva et al., “Laser correlation spectroscopy of macromolecular complexes in blood serum as an effective method of monitoring the progress of bronchial asthma in children,” Doklady Biochemistry and Biophysics, vol. 395, no. 1-6, pp. 114–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. I. E. Kovalev, M. Y. Karganov, E. I. Rumyantseva, and O. I. Kovaleva, “Laser correlation spectroscopy as an effective method of detection of DNA-containing and other macromolecular complexes in blood serum of patients with diabetes mellitus,” Doklady Biochemistry and Biophysics, vol. 386, pp. 281–283, 2002. View at Google Scholar · View at Scopus
  14. E. I. Rumyantseva, I. E. Kovalev, O. I. Kovaleva, and M. Y. Karganov, “Laser correlation spectroscopy of macromolecular complexes in blood serum is an efficient method for detecting insulin overdose and correction of the insulin therapy for diabetes mellitus in children,” Doklady Biochemistry and Biophysics, vol. 402, no. 1–6, pp. 210–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Karganov, O. Kovaleva, A. Sanadze, D. Sidnev, V. Pivovarov, and S. Landa, “Comparative analysis of the informative value of radioimmunoassay and laser correlation spectroscopy in myasthenia gravis and myasthenic syndromes,” Journal of Neurology, vol. 8, supplement 1, pp. 26–29, 2003 (Russian). View at Google Scholar
  16. R. J. Barohn, D. McIntire, L. Herbelin, G. I. Wolfe, S. Nations, and W. W. Bryan, “Reliability testing of the quantitative myasthenia gravis score,” Annals of the New York Academy of Sciences, vol. 841, pp. 769–772, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Y. Karganov, A. V. Skalny, I. B. Alchinova et al., “Combined use of laser correlation spectroscopy and ICP-AES, ICP-MS determination of macro- and trace elements in human biosubstrates for intoxication risk assessment,” Trace Elements and Electrolytes, vol. 28, no. 2, pp. 124–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Vincent, P. J. Whiting, M. Schluep et al., “Antibody heterogeneity and specificity in myasthenia gravis,” Annals of the New York Academy of Sciences, vol. 505, pp. 106–120, 1987. View at Google Scholar · View at Scopus
  19. A. G. Engel, “The investigation of congenital myasthenic syndromes,” Annals of the New York Academy of Sciences, vol. 681, pp. 425–435, 1993. View at Google Scholar · View at Scopus
  20. B. Lang and J. Newsom-Davis, “Immunopathology of the Lambert-Eaton myasthenic syndrome,” Springer Seminars in Immunopathology, vol. 17, no. 1, pp. 3–15, 1995. View at Google Scholar · View at Scopus
  21. D. B. Drachman, “Medical progress: myasthenia gravis,” The New England Journal of Medicine, vol. 330, no. 25, pp. 1797–1810, 1994. View at Publisher · View at Google Scholar · View at Scopus