Table of Contents
ISRN Physical Chemistry
Volume 2014, Article ID 743532, 12 pages
Research Article

Adsorption of Brilliant Green onto Luffa Cylindrical Sponge: Equilibrium, Kinetics, and Thermodynamic Studies

1Chemistry Department, Adekunle Ajasin University, P.M.B 001, Akungba-Akoko, Nigeria
2Department of Chemistry, Obafemi Awolowo University, P.M.B 432, Ile Ife, Nigeria

Received 27 November 2013; Accepted 19 January 2014; Published 4 March 2014

Academic Editors: J. J. Lopez Cascales, L. K. Shrestha, and N. A. Vodolazkaya

Copyright © 2014 Olaseni Segun Esan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The sponge of Luffa cylindrical (LFC), a fibrous material, was employed as adsorbent for the removal of Brilliant Green (BGD) from aqueous effluent via batch studies. The optimum removal of BGD was found at pH 8.2 and the equilibrium was attained within 3 hours. The kinetic data are analyzed using several models including pseudo-first-order, pseudo-second-order, power function, simple elovich, intraparticle diffusion, and liquid film diffusion. The fitting of the different kinetics models to the experimental data, tested by error analysis, using the linear correlation coefficient and chi-square analysis , showed that the mechanism of adsorption process was better described by pseudo-second-order and power function kinetic models. The equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models and the sorption process was described by the Langmuir isotherm with maximum monolayer adsorption capacity of 18.2 mg/g at 303 K. The thermodynamic properties , , and showed that adsorption of BGD onto LFC was spontaneous, endothermic, and feasible within the temperature range of 303–313 K.