Table of Contents
ISRN Mechanical Engineering
Volume 2014 (2014), Article ID 764837, 10 pages
http://dx.doi.org/10.1155/2014/764837
Research Article

Elastic Analysis of Rotating Thick Truncated Conical Shells Subjected to Uniform Pressure Using Disk Form Multilayers

1Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
2Mechanical Engineering Faculty, Shahrood University of Technology, Shahrood, Iran

Received 20 December 2013; Accepted 20 February 2014; Published 17 March 2014

Academic Editors: S. Shen and A. Tounsi

Copyright © 2014 Mohammad Zamani Nejad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Mirsky and G. Hermann, “Axially motions of thick cylindrical shells,” Journal of Applied Mechanics, vol. 25, pp. 97–102, 1958. View at Google Scholar
  2. G. F. Hausenbauer and G. C. Lee, “Stresses in thick-walled conical shells,” Nuclear Engineering and Design, vol. 3, no. 3, pp. 394–401, 1966. View at Google Scholar · View at Scopus
  3. I. S. Raju, G. V. Rao, B. P. Rao, and J. Venkataramana, “A conical shell finite element,” Computers and Structures, vol. 4, no. 4, pp. 901–915, 1974. View at Google Scholar · View at Scopus
  4. S. Takahashi, K. Suzuki, and T. Kosawada, “Vibrations of conical shells with variable thickness,” Bulletin of the JSME-Japan Society of Mechanical Engineers, vol. 29, no. 258, pp. 4306–4311, 1986. View at Google Scholar · View at Scopus
  5. B. S. K. Sundarasivarao and N. Ganesan, “Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions,” Engineering Fracture Mechanics, vol. 39, no. 6, pp. 1003–1010, 1991. View at Google Scholar · View at Scopus
  6. S. A. Tavares, “Thin conical shells with constant thickness and under axisymmetric load,” Computers and Structures, vol. 60, no. 6, pp. 895–921, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Cui, J. Pei, and W. Zhang, “Simple and accurate solution for calculating stresses in conical shells,” Computers and Structures, vol. 79, no. 3, pp. 265–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-P. Wu and S.-J. Chiu, “Thermally induced dynamic instability of laminated composite conical shells,” International Journal of Solids and Structures, vol. 39, no. 11, pp. 3001–3021, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. I. F. Pinto Correia, C. M. Mota Soares, C. A. Mota Soares, and J. Herskovits, “Analysis of laminated conical shell structures using higher order models,” Composite Structures, vol. 62, no. 3-4, pp. 383–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. C. Jane and Y. H. Wu, “A generalized thermoelasticity problem of multilayered conical shells,” International Journal of Solids and Structures, vol. 41, no. 9-10, pp. 2205–2233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-P. Wu, Y.-F. Pu, and Y.-H. Tsai, “Asymptotic solutions of axisymmetric laminated conical shells,” Thin-Walled Structures, vol. 43, no. 10, pp. 1589–1614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. R. S. Eipakchi, E. Khadem, and G. H. S. Rahimi, “Axisymmetric stress analysis of a thick conical shell with varying thickness under nonuniform internal pressure,” Journal of Engineering Mechanics, vol. 134, no. 8, pp. 601–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ghannad, M. Z. Nejad, and G. H. Rahimi, “Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory,” Mechanika, vol. 79, no. 5, pp. 13–20, 2009. View at Google Scholar · View at Scopus
  14. M. Z. Nejad, G. H. Rahimi, and M. Ghannad, “Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system,” Mechanika, vol. 77, no. 3, pp. 18–26, 2009. View at Google Scholar · View at Scopus
  15. A. V. Borisov, “Elastic analysis of multilayered thick-walled spheres under external load,” Mechanika, vol. 84, no. 4, pp. 28–32, 2010. View at Google Scholar · View at Scopus
  16. H. R. Eipakchi, “Third-order shear deformation theory for stress analysis of a thick conical shell under pressure,” Journal of Mechanics of Materials and Structures, vol. 5, no. 1, pp. 1–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Asemi, M. Akhlaghi, M. Salehi, and S. K. Hosseini Zad, “Analysis of functionally graded thick truncated cone with finite length under hydrostatic internal pressure,” Archive of Applied Mechanics, vol. 81, no. 8, pp. 1063–1074, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Ghannad and M. Zamani Nejad, “Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends,” Mechanika, vol. 85, no. 5, pp. 11–18, 2010. View at Google Scholar · View at Scopus
  19. F. Shadmehri, S. V. Hoa, and M. Hojjati, “Buckling of conical composite shells,” Composite Structures, vol. 94, no. 2, pp. 787–792, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Civalek, “Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory,” Composites Part B-Engineering, vol. 45, pp. 1001–1009, 2013. View at Google Scholar
  21. M. Z. Nejad, M. Jabbari, and M. Ghannad, “A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers,” The Scientific World Journal, vol. 2014, Article ID 932743, 10 pages, 2014. View at Publisher · View at Google Scholar
  22. S. Vlachoutsis, “Shear correction factors for plates and shells,” International Journal for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1537–1552, 1992. View at Google Scholar · View at Scopus