Table of Contents
International Scholarly Research Notices
Volume 2014 (2014), Article ID 794583, 10 pages
http://dx.doi.org/10.1155/2014/794583
Review Article

Energy at the Junction of the Rivers Negro and Solimões, Contributors of the Amazon River, in the Brazilian Amazon

Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, P.O. Box 15029, 91501-970 Porto Alegre, RS, Brazil

Received 14 June 2014; Revised 20 August 2014; Accepted 5 September 2014; Published 30 October 2014

Academic Editor: Anna Stoppato

Copyright © 2014 Alexandre Beluco and Paulo Kroeff de Souza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Laraque, “The Amazon: wedding in white and black,” 2013, http://en.ird.fr/ird.fr/the-media-centre/scientific-newssheets/the-amazon-wedding-in-white-and-black.
  2. A. Laraque, J. L. Guyot, P. Seyler, and N. P. Filizola, “Dynamique hydrologique et géochimique de la rencontre des rios Solimões et Negro dans le bassin de l'amazone,” in Proceedings of the Conference on Hydrological and Geochemical Processes in Large Scale River Basins, pp. 1–8, Manaus, Brazil, 1999.
  3. F. Tao, A. M. Aucour, S. Sheppard, M. Benedetti, and J. L. Guyot, Mixing at the Rio Negro-Solimões Confluence: Isotopic Constraints and Major Element Redistribution, Hydrological and Geochemical Processes in Large Scale River Basins, Manaus, Brazil, 1999.
  4. A.-M. Aucour, F.-X. Tao, P. Moreira-Turcq, P. Seyler, S. Sheppard, and M. F. Benedetti, “The Amazon River: Behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence,” Chemical Geology, vol. 197, no. 1–4, pp. 271–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. V. Silva and J. O. G. Pecly, “Distribuição vertical de velocidades e concentrações de sedimentos no rio Solimões,” in Proceedings of the Hydrological and Geochemical Processes in Large Scale River Basins, Manaus, Brasil, 1999.
  6. A. P. Oliveira and D. R. Fitzjarrald, “The amazon river breeze and the local boundary layer, pt.II: linear analysis and modelling,” Boundary-Layer Meteorology, vol. 63, no. 1-2, pp. 141–162, 1993. View at Publisher · View at Google Scholar
  7. A. P. Oliveira and D. R. Fitzjarrald, “The amazon river breeze and the local boundary layer. I: observations,” Boundary-Layer Meteorology, vol. 67, pp. 75–96, 1994. View at Publisher · View at Google Scholar
  8. A. M. Souza, “Programa de aproveitamento da diferença de temperatura existente entre o rio Negro e o rio Solimões,” Proposal for funding sent to FINEP, INPA e UNICAMP, 1976.
  9. WWF-BRASIL, “Agenda Elétrica Sustentável 2020: Estudo de cenários para um setor elétrico brasileiro eficiente, seguro e competitivo,” Série técnica 12, WWF-BRASIL, Brasília, Brasil, 2006. View at Google Scholar
  10. B. Sorensen, Renewable Energy, Academic Press, London, UK, 3rd edition, 2004.
  11. J. W. Twidell and A. D. Weir, Renewable Energy Resources, E. & F.N. Spon, London, UK, 1990.
  12. G. Tamm, D. Y. Goswami, S. Lu, and A. A. Hasan, “Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle,” Solar Energy, vol. 76, no. 1–3, pp. 217–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, “Energetic and economic investigation of organic rankine cycle applications,” Applied Thermal Engineering, vol. 23, pp. 449–463, 2008. View at Google Scholar
  14. T. Yamamoto, T. Furuhata, N. Arai, and K. Mori, “Design and testing of the organic rankine cycle,” Energy, vol. 26, no. 3, pp. 239–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. C. Hung, T. Y. Shai, and S. K. Wang, “A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat,” Energy, vol. 22, no. 7, pp. 661–667, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Wei, X. Lu, Z. Lu, and J. Gu, “Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery,” Energy Conversion and Management, vol. 48, no. 4, pp. 1113–1119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T.-C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids,” Energy Conversion and Management, vol. 42, no. 5, pp. 539–553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Nowak, A. Borsukiewicz-Gozdur, and A. A. Stachel, “Using the low-temperature Clausius-Rankine cycle to cool technical equipment,” Applied Energy, vol. 85, no. 7, pp. 582–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Angelino and P. Colonna Di Paliano, “Multicomponent working fluids for organic Rankine cycles (ORCs),” Energy, vol. 23, no. 6, pp. 449–463, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Drescher and D. Brüggemann, “Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants,” Applied Thermal Engineering, vol. 27, no. 1, pp. 223–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. B.-T. Liu, K.-H. Chien, and C.-C. Wang, “Effect of working fluids on organic Rankine cycle for waste heat recovery,” Energy, vol. 29, no. 8, pp. 1207–1217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. R. DiPippo, “Second Law assessment of binary plants generating power from low-temperature geothermal fluids,” Geothermics, vol. 33, no. 5, pp. 565–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Gu and H. Sato, “Performance of supercritical cycles for geothermal binary design,” Energy Conversion and Management, vol. 43, no. 7, pp. 961–971, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. F. P. Moore and L. L. Martin, “A nonlinear nonconvex minimum total heat transfer area formulation for ocean thermal energy conversion (OTEC) systems,” Applied Thermal Engineering, vol. 28, no. 8-9, pp. 1015–1021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. T. Straatman and W. G. J. H. M. van Sark, “A new hybrid ocean thermal energy conversion-offshore solar pond (OTEC-OSP) design: a cost optimization approach,” Solar Energy, vol. 82, no. 6, pp. 520–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. ANA (Agência Nacional de Águas) and National Water Agency, “Hidroweb Databases,” 2013, http://hidroweb.ana.gov.br/.
  27. B. Cappelaere, H. L. Niel, J. L. Guyot, M. Molinier, M. S. Rodrigues, and E. Oliveira, “Previsão das cheias em Manaus,” in Proceedings of the Hydrological and Geochemical Processes in Large Scale River Basins, p. 11, Manaus, Brasil, 1999.
  28. J. L. Guyot, J. Callède, G. Cochonneau et al., Caractéristiques Hydrologiques du Basin Amazonien, Hydrological and Geochemical Processes in Large Scale River Basins, Manaus, Brazil, 1999.
  29. O. J. M. Fonseca, Fatores ambientais e microbiologia de cinco ecossistemas aquáticos da Amazônia [Dissertação de Mestrado], Curso de Pós Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 1984.
  30. National Electricity Agency, Capacity of Power Generation in Brazil, National Electricity Agency, 2013, http://www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm.