Table of Contents
ISRN Analytical Chemistry
Volume 2014, Article ID 841857, 8 pages
http://dx.doi.org/10.1155/2014/841857
Research Article

Nonconjugated Polyelectrolyte as Efficient Fluorescence Quencher and Their Applications as Biosensors: Polymer-Polymer Interaction

1Department of Chemistry, Indian Institute of Space Science and Technology, Department of Space, Valiyamala, Trivandrum 695547, India
2Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapurra, Trivandrum 695012, India

Received 9 October 2013; Accepted 24 November 2013; Published 22 January 2014

Academic Editors: M. E. Lorenzo and I. Zhukov

Copyright © 2014 Vidya Raj and Sreenivasan Kunnetheeri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Schlupp, T. Weil, A. J. Berresheim, U. M. Wiesler, J. Bargon, and K. Muller, “Polyphenylene dendrimers as sensitive and selective sensor layers,” Angewandte Chemie International Edition, vol. 40, pp. 4011–4015, 2001. View at Google Scholar
  2. D. Tyler McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chemical Reviews, vol. 100, no. 7, pp. 2537–2574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. L. A. Samuelson, D. L. Kaplan, J. O. Lim, M. Kamath, K. A. Marx, and S. K. Tripathy, “Molecular recognition between a biotinylated polythiophene copolymer and phycoerythrin utilizing the biotin-streptavidin interaction,” Thin Solid Films, vol. 242, no. 1-2, pp. 50–55, 1994. View at Google Scholar · View at Scopus
  4. K. Faïd and M. Leclerc, “Functionalized regioregular polythiophenes: towards the development of biochromic sensors,” Chemical Communications, no. 24, pp. 2761–2762, 1996. View at Google Scholar · View at Scopus
  5. M. Hiller, C. Kranz, J. Huber, P. Bauerle, and W. Schuhmann, “Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces,” Advanced Materials, vol. 8, pp. 219–222, 1996. View at Publisher · View at Google Scholar
  6. G. Sukhorukov, A. Fery, and H. Möhwald, “Intelligent micro- and nanocapsules,” Progress in Polymer Science, vol. 30, no. 8-9, pp. 885–897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Peyratout and L. Daehne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angewandte Chemie International Edition, vol. 43, pp. 3672–3678, 2004. View at Publisher · View at Google Scholar
  8. C. K. Ober and G. Wegner, “Polyelectrolyte-surfactant complexes in the solid state: facile building blocks for self-organizing materials,” Advanced Materials, vol. 9, no. 1, pp. 17–31, 1997. View at Google Scholar · View at Scopus
  9. P. T. Hammond, “Form and function in multilayer assembly: new applications at the nanoscale,” Advanced Materials, vol. 16, no. 15, pp. 1271–1293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Zhou and T. M. Swager, “Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity,” Journal of the American Chemical Society, vol. 117, no. 50, pp. 12593–12602, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Volanaskis, “Human C-reactive protein: expression, structure, and function,” Molecular Immunology, vol. 38, pp. 189–197, 2001. View at Publisher · View at Google Scholar
  12. I. Kushner, M. L. Broder, and D. Karp, “Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction,” Journal of Clinical Investigation, vol. 61, no. 2, pp. 235–242, 1978. View at Google Scholar · View at Scopus
  13. Q. Zen, W. Zhong, and R. F. Mortensen, “Binding site on human C-reactive Protein (CRP) recognized by the Leukocyte CRP-receptor,” Journal of Cellular Biochemistry, vol. 64, pp. 140–151, 1997. View at Google Scholar
  14. M. O. Pentikäinen, K. Öörni, M. Ala-Korpela, and P. T. Kovanen, “Modified LDL—trigger of atherosclerosis and inflammation in the arterial intima,” Journal of Internal Medicine, vol. 247, no. 3, pp. 359–370, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. T. B. Ledue, S. E. Poulin, L. F. Leavitt, and A. M. Johnson, “Evaluation of a particle-enhanced immunoassay for quantifying C-reactive protein,” Clinical Chemistry, vol. 35, no. 9, pp. 2001–2002, 1989. View at Google Scholar · View at Scopus
  16. S. Birnbaum, C. Uden, C. G. M. Magnusson, and S. Nilsson, “Latex-based thin-layer immunoaffinity chromatography for quantitation of protein analytes,” Analytical Biochemistry, vol. 206, no. 1, pp. 168–171, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Nilsson, C. Lager, T. Laurell, and S. Birnbaum, “Thin-layer immunoaffinity chromatography with bar code quantitation of C-reactive protein,” Analytical Chemistry, vol. 67, no. 17, pp. 3051–3056, 1995. View at Google Scholar · View at Scopus
  18. X. Chu, J. Jiang, G. Shen, and R. Yu, “Simultaneous immunoassay using piezoelectric immunosensor array and robust method,” Analytica Chimica Acta, vol. 336, no. 1–3, pp. 185–193, 1996. View at Google Scholar
  19. R. E. Banks, “Measurement of cytokines in clinical samples using immunoassays: problems and pitfalls,” Critical Reviews in Clinical Laboratory Sciences, vol. 37, no. 2, pp. 131–182, 2000. View at Google Scholar · View at Scopus
  20. J. L. Bock, “The new era of automated immunoassay,” American Journal of Clinical Pathology, vol. 113, no. 5, pp. 628–646, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. Ridker, M. Cushman, M. J. Stampfer, R. P. Tracy, and C. H. Hennekens, “Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease,” Circulation, vol. 97, no. 5, pp. 425–428, 1998. View at Google Scholar · View at Scopus
  22. C. M. Merritt and J. W. Winkelman, “Electrochemical method for measuring C-reactive protein using crown ether-phosphate ester ionophores,” Analytical Chemistry, vol. 61, no. 21, pp. 2362–2365, 1989. View at Google Scholar · View at Scopus
  23. M. Sivakumar and K. Panduranga Rao, “In vitro release of ibuprofen and gentamicin from PMMA functional microspheres,” Journal of Biomaterials Science, Polymer Edition, vol. 13, no. 2, pp. 111–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Takeoka, K. Sasada, Y. Nishiwaki, M. Rikukawa, and K. Sanui, “Fabrication of polycondensed multilayer thin films by a self-assembly method,” Colloids and Surfaces A, vol. 257-258, pp. 485–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Lee, D.-J. Kim, J.-W. Choi, and K.-K. Koo, “Formation of a protein monomolecular layer by a combined technique of LB and SA methods,” Colloids and Surfaces B, vol. 41, no. 2-3, pp. 163–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Kabanov, A. Zezin, V. Izumrodov, T. Bronich, and K. Bakeev, “Cooperative interpolyelectrolyte reactions,” Die Makromolekulare Chemie, vol. 13, pp. 137–155, 1985. View at Google Scholar
  27. S. J. Dwight, B. S. Gaylord, J. W. Hong, and G. C. Bazan, “Perturbation of fluorescence by nonspecific interactions between anionic poly(phenylenevinylene)s and proteins: implications for biosensors,” Journal of the American Chemical Society, vol. 126, no. 51, pp. 16850–16859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Shi and F. Wudl, “Synthesis and characterization of a water-soluble poly(p-phenylenevinylene) derivative,” Macromolecules, vol. 23, no. 8, pp. 2119–2124, 1990. View at Google Scholar · View at Scopus
  29. J. Park, S. Kurosawa, J. Watanabe, and K. Ishihara, “Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection,” Analytical Chemistry, vol. 76, no. 9, pp. 2649–2655, 2004. View at Publisher · View at Google Scholar · View at Scopus