Table of Contents
ISRN Hematology
Volume 2014 (2014), Article ID 853435, 7 pages
http://dx.doi.org/10.1155/2014/853435
Research Article

Pretransplant Comorbidities Maintain Their Impact on Allogeneic Stem Cell Transplantation Outcome 5 Years Posttransplant: A Retrospective Study in a Single German Institution

BMT Program, Department I of Internal Medicine, University Hospital Cologne, Kerpener Straße 62, 50924 Köln, Germany

Received 8 January 2014; Accepted 4 February 2014; Published 5 March 2014

Academic Editors: T. Caravita and J. M. Moraleda

Copyright © 2014 Jens M. Chemnitz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. Thomas, R. Storb, R. A. Clift et al., “Bone-marrow transplantation (second of two parts),” The New England Journal of Medicine, vol. 292, no. 17, pp. 895–902, 1975. View at Google Scholar · View at Scopus
  2. R. Champlin, I. Khouri, A. Shimoni et al., “Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy,” British Journal of Haematology, vol. 111, no. 1, pp. 18–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Slavin, A. Nagler, E. Naparstek et al., “Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases,” Blood, vol. 91, no. 3, pp. 756–763, 1998. View at Google Scholar · View at Scopus
  4. M. Extermann, “Measuring comorbidity in older cancer patients,” European Journal of Cancer, vol. 36, no. 4, pp. 453–471, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Charlson, T. P. Szatrowski, J. Peterson, and J. Gold, “Validation of a combined comorbidity index,” Journal of Clinical Epidemiology, vol. 47, no. 11, pp. 1245–1251, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Charlson, P. Pompei, K. A. Ales, and C. R. MacKenzie, “A new method of classifying prognostic comorbidity in longitudinal studies: development and validation,” Journal of Chronic Diseases, vol. 40, no. 5, pp. 373–383, 1987. View at Google Scholar · View at Scopus
  7. M. L. Sorror, M. B. Maris, R. Storb et al., “Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT,” Blood, vol. 106, no. 8, pp. 2912–2919, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Castagna, S. Fürst, N. Marchetti et al., “Retrospective analysis of common scoring systems and outcome in patients older than 60 years treated with reduced-intensity conditioning regimen and alloSCT,” Bone Marrow Transplantation, vol. 46, no. 7, pp. 1000–1005, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Farina, B. Bruno, F. Patriarca et al., “The hematopoietic cell transplantation comorbidity index (HCT-CI) predicts clinical outcomes in lymphoma and myeloma patients after reduced-intensity or non-myeloablative allogeneic stem cell transplantation,” Leukemia, vol. 23, no. 6, pp. 1131–1138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Guilfoyle, A. Demers, C. Bredeson et al., “Performance status, but not the hematopoietic cell transplantation comorbidity index (HCT-CI), predicts mortality at a Canadian transplant center,” Bone Marrow Transplantation, vol. 43, no. 2, pp. 133–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. S. Majhail, C. G. Brunstein, S. McAvoy et al., “Does the hematopoietic cell transplantation specific comorbidity index predict transplant outcomes? A validation study in a large cohort of umbilical cord blood and matched related donor transplants,” Biology of Blood and Marrow Transplantation, vol. 14, no. 9, pp. 985–992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Sorror, B. M. Sandmaier, B. E. Storer et al., “Comorbidity and disease status-based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation,” Journal of Clinical Oncology, vol. 25, no. 27, pp. 4246–4254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Patel, K. Sweiss, S. Nimmagadda, W. Gao, and D. Rondelli, “Comorbidity index does not predict outcome in allogeneic myeloablative transplants conditioned with fludarabine/i.v. busulfan (FluBu4),” Bone Marrow Transplantation, vol. 46, no. 10, pp. 1326–1330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Smith, N. S. Majhail, M. L. MacMillan et al., “Hematopoietic cell transplantation comorbidity index predicts transplantation outcomes in pediatric patients,” Blood, vol. 117, no. 9, pp. 2728–2734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-Y. Cahn, M. Labopin, A. Schattenberg et al., “Allogeneic bone marrow transplantation for acute leukemia in patients over the age of 40 years,” Leukemia, vol. 11, no. 3, pp. 416–419, 1997. View at Google Scholar · View at Scopus
  16. M. Gómez-Núñez, R. Martino, M. D. Caballero et al., “Elderly age and prior autologous transplantation have a deleterious effect on survival following allogenic peripheral blood stem cell transplantation with reduced-intensity conditioning: Results from the Spanish multicenter prospective trial,” Bone Marrow Transplantation, vol. 33, no. 5, pp. 477–482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Extermann, “Measurement and impact of comorbidity in older cancer patients,” Critical Reviews in Oncology/Hematology, vol. 35, no. 3, pp. 181–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Birninger, M. Bornhäuser, M. Schaich, G. Ehninger, and J. Schetelig, “The hematopoietic cell transplantation-specific comorbidity index fails to predict outcomes in high-risk AML patients undergoing allogeneic transplantation-investigation of potential limitations of the index,” Biology of Blood and Marrow Transplantation, vol. 17, no. 12, pp. 1822–1832, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. J. Bolwell, “Are predictive factors clinically useful in bone marrow transplantation?” Bone Marrow Transplantation, vol. 32, no. 9, pp. 853–861, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. L. Sorror, B. M. Sandmaier, B. E. Storer et al., “Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies,” Journal of the American Medical Association, vol. 306, no. 17, pp. 1874–1883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Lim, R. Brand, R. Martino et al., “Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia,” Journal of Clinical Oncology, vol. 28, no. 3, pp. 405–411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. L. McClune, D. J. Weisdorf, T. L. Pedersen et al., “Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1878–1887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Wedding, B. Röhrig, A. Klippstein, L. Pientka, and K. Höffken, “Age, severe comorbidity and functional impairment independently contribute to poor survival in cancer patients,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 12, pp. 945–950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. Sorror, “How I assess comorbidities before hematopoietic cell transplantation,” Blood, vol. 121, no. 15, pp. 2854–2863, 2013. View at Google Scholar